

May 2006

Independence Boulevard (Route 122) Corridor Study City of Bedford, Virginia

> Prepared by Mattern & Craig, Inc.

In Cooperation with Region 2000 Local Government Council City of Bedford, Virginia and Virginia Department of Transportation

May 2006

TABLE OF CONTENTS

			rage
1	Existi	ing Conditions	
	1.1	Roadway Geometry	1-5
	1.2	Zoning	6-7
	1.3	Traffic Data	8
	1.4	Capacity Analyses	9-10
	1.5	Safety Analysis – Crash History	11-13
	1.6	Access Management	14-15
	1.7	Public Involvement	16-17
2	2030	Traffic Conditions	
	2.1	2030 Traffic Forecasts	18
3	Futur	re Options	
	3.1	No-Build	19
	3.2	4-Lane, Undivided, Curb and Gutter, with Sidewalks	20
	3.3	5-Lane, Divided (Flush Median), Curb and Gutter, without Sidewalks	21
	3.4	4-Lane, Divided (Raised Median), Curb and Gutter, without Sidewalks	22
	3.5	4-Lane, Divided (Raised Median), Curb and Gutter, with Sidewalk on One Side	23
	3.6	4-Lane, Divided (Raised Median), Curb and Gutter, with Sidewalks and Additional Right-of-Way	24
	3.7	Comparison of Future Options	25-26
4	Study	Recommendations	
	4.1	Typical Cross-Sections	27
	4.2	Traffic Signals	28
	4.3	Access Management Techniques	29
	4.4	Eastside Master Plan	30-31
	4.5	Aesthetics	32-35

LIST OF EXHIBITS

Exhibit		Page
1	Existing Roadway Geometry	1
2	Segment 1 (East Main Street to Freedom Lane)	2
3	Segment 2 (Freedom Lane to Southern States)	2
4	Segment 3 (Southern States to South of Orange Street)	3
5	Segment 4 (South of Orange Street to Dawn Street)	3
6	Segment 5 (Dawn Street to North of Shady Knoll Avenue)	4
7	Segment 6 (North of Shady Knoll Ave to South of Forest Rd)	4
8	Segment 7 (South of Forest Road to Forest Road)	5
9	City of Bedford Zoning Map	7
10	Traffic Volume History	8
11	Capacity Analyses (East Main Street and Independence Blvd)	9
12	Capacity Analyses (Forest Road and Independence Blvd)	10
13	Crash Type (6-Year History)	12
14	Crashes by Month (6-Year History)	12
15	Crashes by Day of Week (6-Year History)	13
16	Crashes by Time of Day (6-Year History)	13
17	Access Management Techniques	15
18	Future Traffic Volumes	18
19	4-Lane, Undivided, Curb & Gutter, Sidewalks (Both Sides)	20
20	5-Lane, Divided (Flush Median), Curb & Gutter, No Sidewalks	21
21	4-Lane, Divided (Raised Median), Curb & Gutter, No Sidewalks	22
22	4-Lane, Divided (Raised Median), Curb & Gutter, Sidewalk One Side	23
23	4-Lane, Divided (Raised Median, Curb & Gutter, Sidewalks (Both Sides)	24
24	Comparison of Future Options (A)	26
25	Comparison of Future Options (B)	26
26	Improvements to Lowry Street	31
27	Typical Landscaping Along Independence Boulevard	34
28	Typical Landscaping Near East Main Street	34
29	Typical Landscaping Near Commercial Development	35

APPENDICES

- Appendix A Traffic Count Data
- Appendix B Traffic Growth Worksheets
- Appendix C Highway Capacity Software Worksheets
- Appendix D Traffic Signal Plans
- Appendix E Independence Boulevard Aerial Views With Improvements

<u>1.1 – Roadway Geometry</u>

Independence Boulevard (Route 122) from East Main Street (US 460 Business) to Forest Road (US 221) consists of a two to four-lane cross section with a total length of 1.78 miles, a minimum right-of-way width of 90 feet, and a posted speed limit of 45 mph. This road was built and open to traffic during 1993. The four-lane sections include curb and gutter while the two-lane and transition sections include unpaved shoulders with a width of six feet or greater. The travel lanes have a width of 12 feet. Not including the beginning and ending points, there are four intersections with public roads, including Freedom Lane, Orange Street, Dawn Drive, and Shady Knoll Avenue/Venture Boulevard. Three of these intersections are currently unsignalized; however, a traffic signal has recently been installed at the intersection of Independence Boulevard and Freedom Lane. The Norfolk & Western Railroad crosses over Independence Boulevard at a point between Orange Street and Dawn Drive. Based upon the original construction plans, the ultimate cross-section for the entire section of road consists of a four-lane undivided, curb and gutter facility with sidewalks on both sides of the road (Exhibit 1 describes the existing roadway conditions between intersections. See Exhibits 2, 3, 4, 5, 6, 7, and 8 for digital photos of the segments).

Exhibit 1 – Existing Koadway Ocometry				
Sagmants	Number	Pavement	Typical	
Segments	of Lanes	Width	Section	
East Main Street to Freedom Lane	3 to 4	48	C&G/Shoulder	
Freedom Lane to Southern States	3	34	Shoulder	
Southern States to South of Orange Street	2	24 ^A	Shoulder	
South of Orange Street to Dawn Street	2 to 4	48^{B}	C&G	
Dawn Street to North of Shady Knoll Avenue	3	36 ^C	Shoulder	
North of Shady Knoll Avenue to South of	2	24^{D}	Shouldar	
Forest Road	2	∠4	Shoulder	
South of Forest Road to Forest Road	4	48	C&G/Shoulder	

Exhibit 1 – Existing Roadway Geometry

Note A: Southbound right-turn lane at Southern States

Note B: Northbound and southbound right-turn lanes at Orange Street

Note C: Southbound right-turn lane at Dawn Street and northbound right-turn lane at Venture Boulevard

Note D: Northbound right-turn lane at Dominion of Bedford, Inc.

Exhibit 2 – Segment 1 (East Main Street to Freedom Lane)

Exhibit 3 – Segment 2 (Freedom Lane to Southern States)

Exhibit 4 – Segment 3 (Southern States to South of Orange Street)

Exhibit 5 – Segment 4 (South of Orange Street to Dawn Street)

Exhibit 6 – Segment 5 (Dawn Street to North of Shady Knoll Avenue)

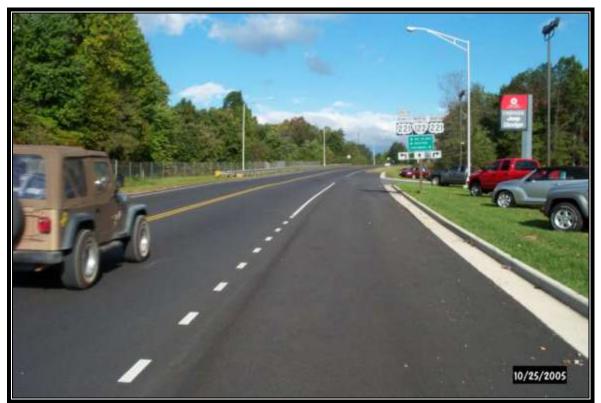


Exhibit 7 – Segment 6 (North of Shady Knoll Avenue to South of Forest Road)

Exhibit 8 – Segment 7 (South of Forest Road to Forest Road)

(This space intentionally left blank)

1.2 - Zoning

Current zoning along the Independence Boulevard corridor includes General Business District (B-2), Manufacturing District (M-1), and Workplace Campus District (WCD). As described in the City of Bedford's zoning ordinance, the business districts have been designed to accommodate uses in a nodal development pattern. Provision is made for the conduct of general business to which the public requires direct and frequent access, but which is not characterized by either constant heavy trucking other than stocking and delivery of retail goods, or by any nuisance factors other than occasioned by incidental noise of congregation of people and passenger vehicles. The manufacturing district has been designed to accommodate industrial uses that provide desirable employment consistent with the goal of maintaining the city's high environmental quality. High performance requirements have been established including additional protection from adverse environmental effects for residential districts bordering the district. This district is protected against encroachment from commercial or residential uses. The workplace campus district has been designed to provide what is generally known as an industrial park for the location of environmentally clean light and medium manufacturing activities, warehousing, wholesale distribution, research and development, and office complexes. Certain uses of a commercial or business nature (such as restaurants and limited retail shops) that serve the employees who work on site are incorporated as accessory uses in order to provide an attractive work environment (See Exhibit 9).

On Tuesday, February 28, 2006, the Bedford City Council approved by unanimous vote a new zoning district known as the Special Corridor Overlay District (SCOD). The intent of this new district is to maintain the long-term mobility of arterial roadways (*such as VA 122, US 221, and US 460*); to limit access and the number of conflicts (*thereby reducing the need for additional crossover locations and traffic signals*); to promote improved pedestrian and vehicular circulation; to encourage land assembly and the most desirable use of land in accordance with the comprehensive plan; to promote architectural continuity; to encourage designs which produce a desirable relationship between individual buildings, the circulation systems, and adjacent areas; and to permit a flexible response of development to the market. This district shall apply only to specific areas as determined by City Council.

In addition, the City of Bedford is currently considering rezoning a major part of the Independence Boulevard corridor south of Orange Street from Manufacturing (M-1) to General Business (B-2).

At this time, much of the available property along both sides of Independence Boulevard is undeveloped with only four existing businesses having direct access to the road. These businesses include CVS Pharmacy, Southern States Cooperative, Quality Water Systems, and Dominion of Bedford (*Chrysler, Dodge, Jeep dealership*).

Exhibit 9 – City of Bedford Zoning Map

(This space intentionally left blank)

<u>1.3 – Traffic Data</u>

According to traffic volume information furnished by the Virginia Department of Transportation (VDOT), traffic counts are collected periodically at three locations along Independence Boulevard (Route 122). These locations include the section between East Main Street and Orange Street (Location # 1), the section between Orange Street and Dawn Street (Location # 2), and the section between Dawn Street and Forest Road (Location # 3). Traffic volume information is not available for the years 1994 to 1996 and the 1997 volumes were based on historical estimates and not actual counts. Data for the year 2005 is not available until later in the spring of 2006. Although the seven-year time period from 1998 to 2004 indicates an annual growth rate of 3.3 percent, the four-year time period from 2001 to 2004, indicates that the traffic volumes have actually experienced no growth (See Exhibit 10).

The City of Bedford collected 24-hour tube traffic counts at four locations along Independence Boulevard (Route 122) during February 2006. These counts range from a low of 10,300 vehicles per day to a high of 12,200 vehicles per day, which is an apparent spike compared to the volumes listed in Exhibit 10. At this time, it is not known if these traffic counts indicate a new trend along Independence Boulevard; therefore, they are not used to help determine the annual growth for this study.

Year	Location # 1	Location # 2	Location # 3			
1998	8,100 vpd	7,500 vpd	7,500 vpd			
1999	7,700 vpd	7,200 vpd	7,200 vpd			
2000	7,700 vpd	7,100 vpd	7,200 vpd			
2001	9,800 vpd	9,900 vpd	8,600 vpd			
2002	9,600 vpd	9,700 vpd	8,500 vpd			
2003	9,500 vpd	9,600 vpd	8,400 vpd			
2004	9,400 vpd	9,200 vpd	8,200 vpd			

Exhibit 10 – Traffic Volume History

Source: Virginia Department of Transportation (VDOT) (Traffic volumes rounded up to the nearest hundred)

8-hour turning movement traffic counts were collected at the intersection of East Main Street (US 460 Business) and Independence Boulevard (Route 122) and at the intersection of Forest Road (US 221) and Independence Boulevard (Route 122) during September 2005 during the am, mid-day, and pm peak time periods (See Appendix A).

<u>1.4 – Capacity Analyses</u>

Using methodology contained in the *Highway Capacity Manual (HCM) 2000 Edition*, which is published by the Transportation Research Board, capacity analyses were performed at two existing signalized intersections; specifically, the intersections at East Main Street and at Forest Road during the morning and afternoon peak hours for existing and future conditions. The existing conditions were based on turning movement traffic counts that were collected during September 2005 and the future conditions were based on these traffic counts projected at an annual growth rate of 1.5 percent for 25 years to the year 2030.

The software program *HCS2000, Version 4.1f* was used for the capacity analyses and the following assumptions were included in order to create a worst-case scenario. First, although the existing traffic signals operate in a semi-actuated, isolated mode, the intersections were analyzed with the traffic signals optimized in a pre-timed mode, then adjusted to the maximum and minimum timings that were furnished by the City of Bedford. If an acceptable level of service can be achieved in pre-timed operation, it is reasonable to conclude that the actuated mode of operation will perform at or better than the pre-timed level of service. It should be noted that, although this conclusion is conservative for the level of service (LOS), it would provide a lower v/c ratio than the average timings. Second, no right turns on red (RTOR) were included during any phase and third, a five percent factor for heavy vehicles was used along all approaches.

The results of the capacity analyses for the base year of 2005 and the future year of 2030 at the East Main Street intersection indicate that levels of service (LOS) of "C" or better will be realized during both the am and pm peak hours on all approaches with a level of service (LOS) of "B" realized for the entire intersection and a control delay ranging from 10.4 seconds per vehicle to 17.8 seconds per vehicle for the entire intersection (See Exhibit 11).

Approach	Peak	2005		2030	
Approach	Hour	LOS	Delay	LOS	Delay
Eastbound (East Main Street)	AM	А	6.8	А	7.3
Westbound (East Main Street)	AM	А	6.6	А	7.8
Southbound (Independence Blvd)	AM	С	22.1	С	25.9
Entire Intersection	AM	В	10.4	В	12.1
Eastbound (East Main Street)	PM	В	10.4	В	11.6
Westbound (East Main Street)	PM	В	13.4	В	14.5
Southbound (Independence Blvd)	PM	В	18.1	С	25.2
Entire Intersection	PM	В	14.3	В	17.8

Exhibit 11 – East Main Street and Independence Boulevard

The results of the capacity analyses for the base year of 2005 and the future year of 2030 at the Forest Road intersection indicate that levels of service (LOS) of "C" or better will be realized during both the am and pm peak hours on all approaches with a level of service (LOS) of "C" or better realized for the entire intersection and a control delay ranging from 19.4 seconds per vehicle to 29.6 seconds per vehicle for the entire intersection (See Exhibit 12).

Exhibit 12 1 of est Roud and Independence Doule vara/Longwood If vende					
Approach	Peak	2005		2030	
Approach	Hour	LOS	Delay	LOS	Delay
Eastbound (Forest Road)	AM	В	16.8	С	22.1
Westbound (Forest Road)	AM	С	21.2	С	26.6
Northbound (Independence Blvd)	AM	С	20.7	С	26.7
Southbound (Longwood Ave)	AM	В	19.5	С	22.5
Entire Intersection	AM	В	19.4	С	24.6
Eastbound (Forest Road)	PM	В	17.9	С	28.5
Westbound (Forest Road)	PM	С	22.5	D	36.0
Northbound (Independence Blvd)	PM	С	21.0	С	28.2
Southbound (Longwood Ave)	PM	В	17.2	В	18.8
Entire Intersection	PM	В	19.8	С	29.6

Exhibit 12 – Forest Road and Independence Boulevard/Longwood Avenue

<u>1.5 – Safety Analysis – Crash History</u>

The City of Bedford's Police Department furnished crash data along Independence Boulevard for a 6-year time period beginning on January 1, 2000 and ending on December 31, 2005. During this time period, a total of 211 reported crashes occurred. Summarizing the data reveals that the heaviest month for the crashes is December, the heaviest day is Friday, and the heaviest hour is from 3:00 pm until 4:00 pm. The most common crash type is rear-end, followed by angle and deer/other animal strikes. As discussed in the Bedford 2020 Transportation Plan, an unusually large number of crashes involving drivers hitting deer occurred in the City of Bedford during the years 1996 to 1998 (*131 reported crashes*). 26 of these crashes occurred along Independence Boulevard during this time period compared to 50 crashes for the most recent time period. Rear-end and angle type crashes typically occur at or near intersections. It should be noted that many crashes are unreported for a variety of reasons; therefore, more crashes might have occurred in the study area (See Exhibits 13, 14, 15, and 16).

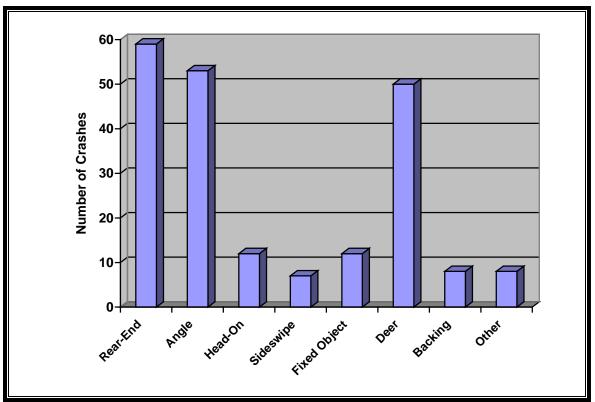


Exhibit 13 – Crash Type (6-Year History)

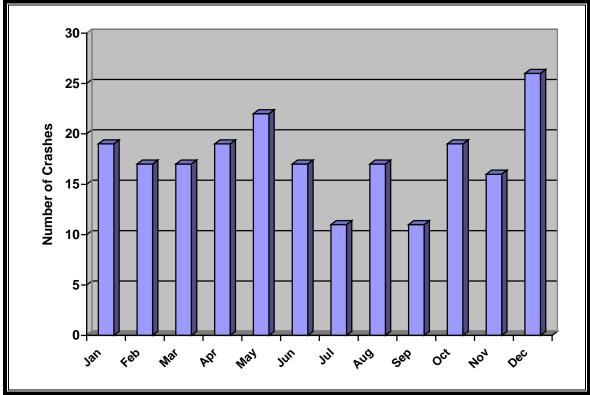


Exhibit 14 – Crashes By Month (6-Year History)

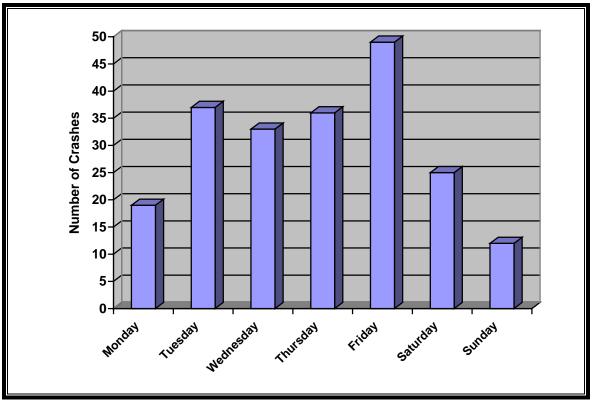


Exhibit 15 – Crashes By Day Of Week (6-Year History)

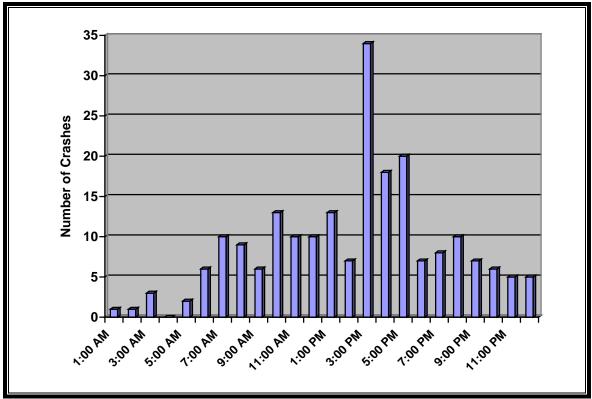


Exhibit 16 – Crashes By Time Of Day (6-Year History)

<u>1.6 – Access Management</u>

According to the *Access Management Manual (2003)*, which is published by the Transportation Research Board, access management is defined as the systematic control of the location, spacing, design, and operation of driveways, median openings, interchanges, and street connections to a roadway. It also involves roadway design applications, such as median treatments and auxiliary lanes, and the appropriate spacing of traffic signals. The purpose of access management is to provide vehicular access to land development in a manner that preserves the safety and efficiency of the transportation system. Objectives to consider in establishing access design criteria include the following items:

- Preserve the functional intent of the roadway to which access is to be provided.
- Minimize the difference in speed between turning vehicles and through traffic to produce a safe traffic environment.
- Eliminate encroachment of turning vehicles on adjacent lanes.
- Use a combination of throat width and return radii that will accommodate the intended exit and entry operations of the selected design vehicle.
- Provide adequate sight distance for drivers exiting the site.
- Provide sufficient storage within the driveway for traffic entering the site to prevent spill-back onto the abutting road.
- Provide sufficient queuing within the driveway to produce efficient traffic flow for vehicles leaving the site.
- Minimize the number of conflict points at the junction of the access connection with the abutting road.
- Provide adequate storage for turn lanes and within access connections to accommodate peak traffic demand.

The Special Corridor Overlay District (SCOD) that was approved by the City of Bedford would implement many of these objectives.

Exhibit 17 illustrates various access management techniques including no direct access points along the main roadway, joint-use access (*between properties*), a median opening with left-turn lanes and a right-turn lane, an internal roadway network, buildings located to the front of the property, and parking located to the rear of the property. This exhibit also illustrates the additional right-of-way needed to accommodate the right-turn lane (*the developer would probably be required to furnish the additional right-of-way*).

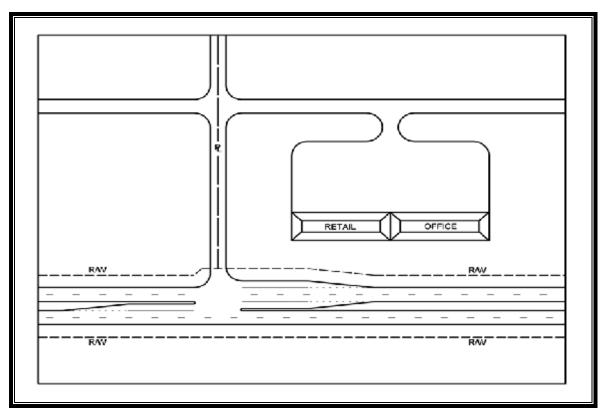


Exhibit 17 – Access Management Techniques

(This space intentionally left blank)

<u>1.7 – Public Involvement</u>

Public involvement and comments are crucial to the success of this type of study and as a result, two public meetings were scheduled. The first meeting was held on Thursday, March 2, 2006 at the city council chambers in Bedford, Virginia. About 25 citizens attended this meeting and offered the following comments:

- Preserve the original concept of the corridor to efficiently move traffic from north to south while serving as a truck bypass in order to minimize truck traffic in the downtown area.
- Prefer the ultimate cross-section of the road to include a raised, landscaped median with various plantings, trees, hedges, and/or shrubs (*Plantings would help enhance the downtown flavor, would plantings hinder truck traffic?*).
- With a raised, landscaped median concept and limited median crossovers, how can trucks make appropriate u-turning movements?
- Are intersecting roads (for example, Orange Street east of Independence Boulevard) suitable to handle additional traffic?
- Are separate left-turn lanes better than without them?
- Should right-turn lanes be used?
- Limit access points; encourage internal interconnectivity between adjacent properties.
- Maintain consistency throughout the corridor.
- Install underground utilities on the shoulders rather than the travel lanes.
- Should bicycle lanes/facilities be added to the corridor?
- Does the actual travel speed hinder pedestrian and/or bicycle activity?
- Extend Lowry Street to intersect with Orange Street (*preferably near McGee Street*).
- Can potential developers help fund various improvements to the infrastructure?

The second meeting was held on Thursday, April 6, 2006 at the city council chambers in Bedford, Virginia with about 15 citizens in attendance. These citizens offered the following comments:

- Why was the 4-lane, undivided facility originally designed?
- What is the purpose of the road; encourage development, pedestrian friendly, limited access, hide development behind screening, etc.?
- The Planning Commission recommends that the Special Corridor Overlay District (SCOD) be applied to Independence Boulevard.
- Can street lights be placed in the median?
- Terrain makes widening beyond the existing 90-foot right-of-way very costly.
- City should decide on land-use type before selecting a typical cross-section.
- City is considering changing zoning from Manufacturing District to General Business District.
- Would like a 4-lane, undivided, curb and gutter facility with sidewalks along both sides of the road.

All of the input from the citizens was invaluable and indicated a strong interest in the future development of the entire corridor. Many of the comments are addressed in this report; however, other comments will be monitored by the city because they are beyond the scope of this project. Subsequent to the public meetings, it was determined that decisions on bicycle lanes for the Independence Boulevard corridor should be made as a part of a City-wide bicycle facilities planning process. This process is currently underway as a separate project. The recommendations included in this report do not preclude the addition of bicycle facilities to the corridor. Additional right-of-way may be needed to accommodate such facilities.

<u>2.1 – 2030 Traffic Forecasts</u>

Future traffic volumes in the Bedford 2020 Transportation Plan were developed based on an analysis of historic traffic data for roadways within the city limits of Bedford from 1980 until 1999 using 1999 as the base year. This data indicated that an annual growth rate of 1.5 percent was used along most roads in Bedford including Independence Boulevard (*This annual growth rate was reviewed and approved by VDOT*). The future traffic volumes along Independence Boulevard for the years 2010 and 2020 are summarized in Exhibit 18. For purposes of this study, the future traffic volumes for the year 2030 are calculated using the traffic volumes from the year 2020 as the base year and growing them at an annual rate of 1.5 percent (*simple rate methodology*) yielding daily traffic volumes of less than 15,000 vehicles per day.

Year	Location # 1	Location # 2	Location # 3				
2010	11,000 vpd	10,600 vpd	10,600 vpd				
2020	12,400 vpd	12,000 vpd	12,000 vpd				
2030	14,300 vpd	13,800 vpd	13,800 vpd				
C							

Exhibit 18 – Future Traffic Volumes

Source: The Bedford 2020 Transportation Plan (Exhibits 19 and 24) (Traffic volumes rounded up to the nearest hundred)

= Calculated traffic volumes using 2020 as the base year

Location # 1 = East Main Street to Orange Street Location # 2 = Orange Street to Dawn Street Location # 3 = Dawn Street to Forest Road

The 2001 to 2004 results are similar to the conclusions reached in the Bedford 2020 Transportation Plan where a 1.5 percent annual growth rate was used for forecasting purposes along most roads in Bedford including Independence Boulevard. As stated in Appendix B of the subject plan (*page B-8*), this growth rate represents a small yearly growth that ensures that the transportation system can accommodate some level of growth for Bedford, while recognizing that the trends show little or negative overall growth in traffic and population. It should be noted that the annual growth rate in the subject plan was based on simple rate methodology and rounded to the nearest hundred rather than compound rate methodology.

<u>3.1 – No-Build</u>

The originally designed ultimate cross-section along Independence Boulevard consists of a four-lane undivided, curb and gutter facility with sidewalks along both sides of the road. Recommendations discussed in the Bedford 2020 Transportation Plan for the year 2010 (*Interim Year*) included a traffic signal at the intersection of Independence Boulevard and Orange Street, when the appropriate traffic signal warrants are satisfied, and the completion of the widening of Independence Boulevard to four lanes to provide lane continuity and capacity.

The Special Corridor Overlay District (SCOD), approved by the City of Bedford, emphasizes efficient traffic flow and mobility by restricting direct access and encouraging (*requiring*) connectivity. Any parcel or lot having frontage along an arterial road shall be permitted one direct access to that arterial, unless the parcel or lot has other means of access to the arterial. In addition, all private drives shall be interconnected with adjoining development with stubs provided to adjacent undeveloped property for future development.

Based on information contained in this report and public input, six options could be considered for the future typical cross-section that meets the needs for lane continuity and capacity. These options include a no-build option, a 4-lane undivided, curb and gutter, with sidewalks on both sides of the road option, a 5-lane divided with flush median, curb and gutter, without sidewalks option, a 4-lane divided with raised median, curb and gutter, without sidewalks option, a 4-lane, divided with raised median, curb and gutter, with sidewalks on one side of the road option, and a 4-lane divided with raised median, curb and gutter, with sidewalks on both sides of the road option (*this option would need additional right-of-way*).

The no-build option means exactly what it implies and that is to leave the existing road with its current geometry alone. Although this option might be satisfactory for the immediate future, operational problems will occur when the surrounding property develops. At that point, reactive mitigation measures instead of proactive measures would need to be taken. Safety concerns for turning vehicles will increase as the total traffic volumes increase.

3.2 – 4-Lane, Undivided, Curb and Gutter with Sidewalks

This option represents the ultimate cross-section for the widening of Independence Boulevard as shown on the approved roadway plans. This cross-section has a horizontal distance of 76 feet from shoulder break point to shoulder break point and can be accommodated within the existing right-of-way width of 90 feet.

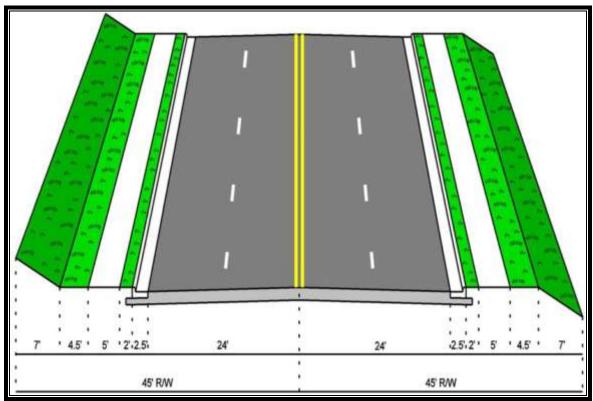


Exhibit 19 – 4-Lane, Undivided, Curb & Gutter, Sidewalks (Both Sides)

<u>3.3 – 5-Lane, Divided (Flush Median), Curb and Gutter, without Sidewalks</u>

This option would include a continuous two-way left-turn lane (TWLTL); however, in order for it to fit within the existing right-of-way, the sidewalks would need to be excluded. According to the *Access Management Manual (2003)*, which is published by the Transportation Research Board, median-divided highways (*including TWLTL*) are generally safer and more efficient than undivided highways. Average crash rates are about 35 percent lower compared to undivided roadways and the capacity increases while delay decreases. This type of roadway is generally appropriate when the daily traffic volumes are less than 24,000 vehicles per day. Although a TWLTL generally improves safety, it also encourages strip commercial development; therefore, it is not considered a good access management tool.

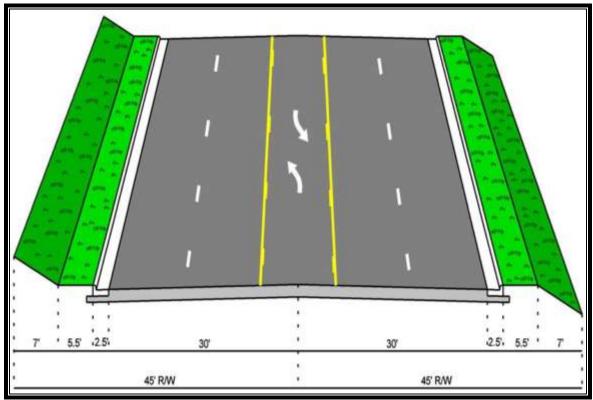


Exhibit 20 – 5-Lane, Divided (Flush Median), Curb & Gutter, No Sidewalks

<u>3.4 – 4-Lane, Divided (Raised Median), Curb and Gutter, without Sidewalks</u>

As indicated by the first community meeting, this option is the preferred one primarily because of its aesthetic considerations. As in the case of the 5-Lane alternative, the sidewalks would need to be excluded in order for it to fit within the existing right-of-way. In addition, the median width would be limited to 16 feet, which is the minimum width allowed by the Virginia Department of Transportation to accommodate a left-turn lane with a width of 12 feet. Benefits of this type of roadway include enhanced safety (*average crash rate 30 percent less than TWLTL*) and set locations for left-turning movements. This type of roadway is generally appropriate when daily traffic volumes are in the 24,000 to 28,000 vehicles per day range. Since the design speed is greater than 45 mph, a mountable type curb (CG-3) is required for the raised median.

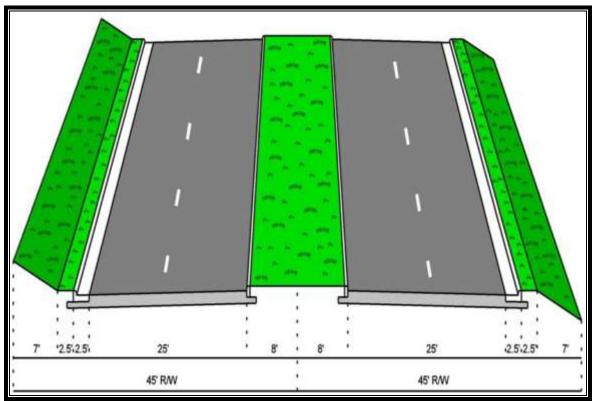


Exhibit 21 – 4-Lane, Divided (Raised Median), Curb & Gutter, No Sidewalks

<u>3.5 – 4-Lane, Divided (Raised Median), Curb and Gutter, with Sidewalk</u> <u>on One Side</u>

By shifting the centerline, this option attempts to provide a sidewalk along one side of the road and keep all improvements within the existing right-of-way width of 90 feet.

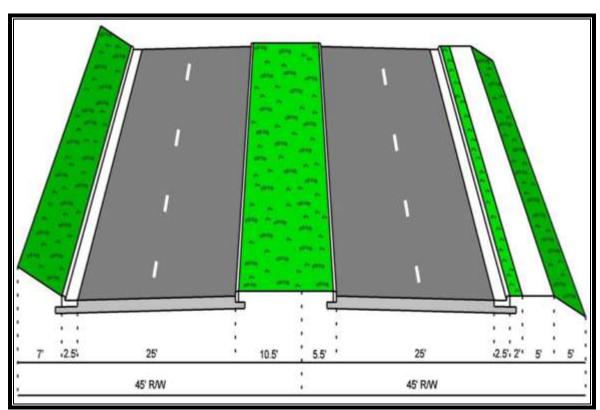


Exhibit 22 – 4-Lane, Divided (Raised Median), Curb & Gutter, Sidewalk One Side

<u>3.6 – 4-Lane, Divided (Raised Median), Curb and Gutter, with</u> <u>Sidewalks and Additional Right-of-Way</u>

This option provides the preferred cross-section with sidewalks on both sides of the road. The minimum right-of-way width to accommodate this option would be 110 feet.

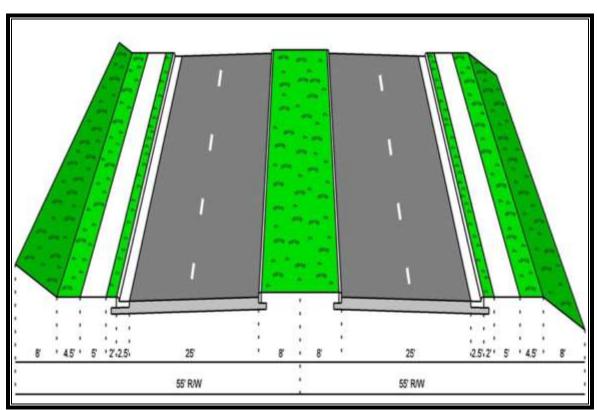


Exhibit 23 – 4-Lane, Divided (Raised Median), Curb and Gutter, Sidewalks Both Sides

<u>3.7 – Comparison of Future Options</u>

In developing the various options, an attempt was made to stay within the existing right-of-way width of 90 feet and the existing horizontal distance between the shoulder break points of 76 feet. When the road was first constructed, the rough grading at a minimum would have been accomplished throughout the entire length of the project. Therefore, it is reasonable to conclude that the overall cost of these options should be less than options requiring additional right-of-way.

It is possible that two options would fit within the horizontal distance between the shoulder break points; specifically, the 5-lane, divided (*flush median*) option and the 4-lane, divided (*raised median*) option. However, in order for these two options to fit, the sidewalks would need to be excluded. A third option would be to use the 4-lane, divided (*raised median*) cross-section and offset the centerline 2.5 feet on the cut side to accommodate a sidewalk on the fill side. With a 2-foot utility strip, this cross-section would be difficult to contain this option between the shoulder break points (See Exhibit 24).

In order to accommodate the desired cross-section including sidewalks on both sides of the road, additional right-of-way would be needed (See Exhibit 25).

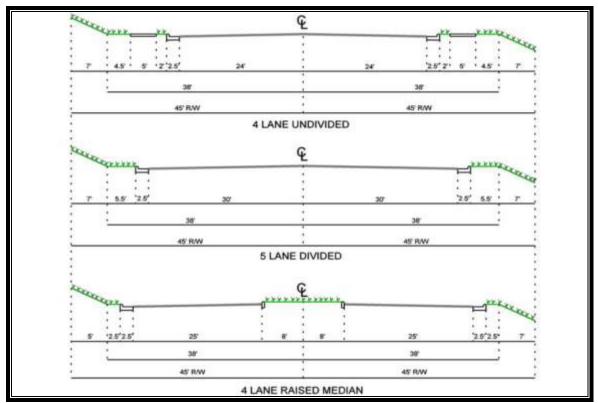


Exhibit 24 – Comparison of Future Options (A)

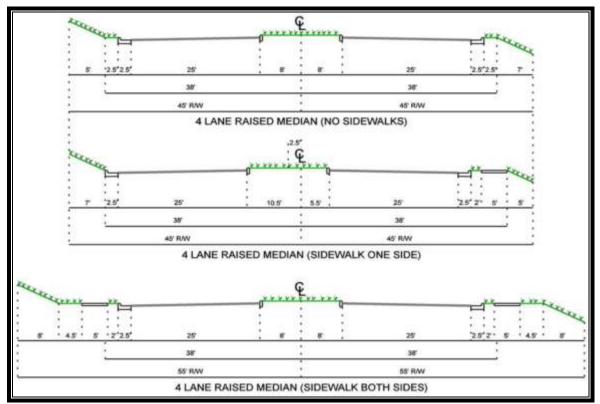


Exhibit 25 – Comparison of Future Options (B)

<u>4.1 – Typical Cross-Sections</u>

One of the comments at the first community public meeting was a desire to maintain consistency throughout the entire corridor. Due to physical constraints, including the existing Norfolk & Western Railroad Bridge and traffic signal pole spacing at both ends of Independence Boulevard, one typical cross-section is not possible. The following two typical cross-sections are recommended:

- Recommend a typical cross-section consisting of a four-lane, undivided, curb and gutter facility and sidewalks (*width of 5 feet and a 2-foot buffer strip*) on both sides of the road from East Main Street to a point north of the Southern States access point and from a point south of Forest Road to Forest Road.
- Recommend a typical cross-section consisting of a four-lane, divided, curb and gutter facility with a raised, landscaped median (*width of 16 feet*) and sidewalks (*width of 5 feet and a 2-foot buffer strip*) on both sides of the road from a point north of the Southern States access point to a point near the Norfolk & Western railroad southern right-of-way and from the Norfolk & Western railroad northern right-of-way to a point south of Forest Road (*a minimum right-of-way width of 110 feet would be needed*) including the following features:
 - 1. Median openings will be provided at the intersections of all public roads, Cheatham Park Drive, and Dominion of Bedford, Inc. In addition, a median opening will be provided between Cheatham Park Drive and Orange Street to serve property on both sides of Independence Boulevard (*VDOT guidelines for median openings and nationally recognized guidelines for traffic signal spacing will be used to determine additional locations for median openings*).
 - 2. Left-turn lanes will be provided at all median openings in both directions of travel (*per VDOT guidelines*).
- Maintain existing cross-section consisting of a four-lane, undivided, curb and gutter facility and sidewalks (*width of 5 feet and a 2-foot buffer strip*) on both sides of the road within the Norfolk & Western railroad right-of-way (*sidewalks have not been installed*).

For planning purposes, the total estimated cost including additional right-of-way to provide the subject cross-sections along Independence Boulevard from East Main Street to Forest Road is about \$7.5 million.

<u>4.2 – Traffic Signals</u>

Not including the intersections at each end of Independence Boulevard, there are a total of four intersections with public roads including Freedom Lane, Orange Street, Dawn Street, and Shady Knoll Avenue/Venture Boulevard. Currently, the intersection at Freedom Lane is signalized and the other three intersections are unsignalized. As traffic volumes grow along this corridor, the need for additional traffic signals might become evident. In order to maintain efficient mobility along Independence Boulevard, the installation of traffic signals should be kept to a minimum. Since the Bedford 2020 Transportation Plan and the Eastside Master Plan (2005) identified the intersection of Independence Boulevard and Orange Street as a possible candidate for signalization whenever traffic signal warrants are satisfied, the following recommendation is made:

• Install a traffic signal at the intersection of Independence Boulevard and Orange Street whenever traffic signal warrants are satisfied.

4.3 – Access Management Techniques

One of the comments at the first community public meeting was a desire to preserve the original concept of the corridor to efficiently move traffic from north to south while serving as a truck bypass in order to minimize truck traffic in the downtown area. The use of various access management techniques would help to accomplish this goal; therefore, the following recommendations are made:

- Encourage the use of various access management techniques to preserve the mobility of the corridor without causing an undue burden to the adjacent property owners. These techniques include, but are not limited to, the use of a raised median, the use of joint access points, interconnectivity between properties, internal roadway networks, buildings located to the front of the property, and parking located to the back of the properties.
- Consider the need for right-turn lanes and/or tapers on a *case-by-case basis* based on guidelines set forth by the Virginia Department of Transportation (VDOT).
- Consistent with city regulations, require developers to fund off-site improvements including, but not limited to, left-turn lanes, right-turn lanes, curb and gutter, sidewalks, closed stormwater drainage systems, street lights, traffic signals, and relocating existing utilities.

As development occurs along the Independence Boulevard corridor and traffic increases, the speed limit should be evaluated periodically to assure that the current 45 mph speed limit is appropriate.

<u>4.4 – Eastside Master Plan</u>

The Bedford City Council approved the Eastside Master Plan on July 12, 2005. The purpose of this plan is to provide guidance to the future development of the Independence Boulevard corridor especially along the east side of the road between East Main Street (US 460 Business) and Orange Street. The recommendations were based on the following assumptions:

- 1. There is a present market-driven demand for commercial development along Independence Boulevard.
- 2. The current level of service for traffic flow on Independence Boulevard (*i.e. its functionality as a bypass connector between US 460 Business and US 221*) must be preserved to the greatest possible extent.
- 3. A large 48-acre property near the intersection of Independence Boulevard and Orange Street will likely be developed as a mixed-use project in the future.
- 4. Development along the Independence Boulevard corridor will directly impact Centertown both positively and negatively.
- 5. Two traffic signals will be installed along Independence Boulevard, one at its intersection with Freedom Lane and one at Orange Street.
- 6. Lowry Street will be used as a primary access road for future development (*both residential and commercial*).
- 7. Freedom Lane will be extended across Lowry Street into the Wal-Mart shopping center in Bedford County.

Using these assumptions, the following recommendations were developed:

- 1. Development of an interconnected roadway network must take place in conjunction with future development of the Independence Boulevard corridor.
- 2. Regulations should be drafted and applied which specifically prohibit private entrances on Independence Boulevard and require connectivity between individual properties.
- 3. Lowry Street should be improved and developed to serve as the principal access for development along the east side of the Independence Boulevard corridor at the expense of developers and/or adjacent property owners (See Exhibit 26).
- 4. The land along Lowry Street presently zoned M-1 should be rezoned to allow for commercial use. B-2 would be the most appropriate existing category for this area.
- 5. The property occupied by Southern States and adjacent to the R-3 district should be rezoned to B-2.
- 6. The existing M-1 district provisions should be amended to include design requirements for all uses at a minimum.
- 7. Overlay regulations for the Independence Boulevard corridor need to be drafted and applied. Such regulations should be similar to the Traditional Neighborhood Overlay district requirements, but allow mixed-use development by right (*as opposed to the conditional use process currently espoused by TNO*).

Exhibit 26 – Improvements to Lowry Street

In order to complement the recommendations from the Eastside Master Plan, the following recommendation is included as one of the recommendations for the Independence Boulevard corridor study:

• Encourage the recommendations contained in the Eastside Master Plan including improvements to Lowry Street and the creation of an internal roadway network to serve future commercial development along this section of Independence Boulevard. Encourage the extension of Lowry Street to serve all possible properties. Although the extension of Lowry Street to Orange Street would be ideal, it is probably cost prohibitive due to terrain issues.

4.5 - Aesthetics

According to both community public meetings, aesthetics is an important factor to be considered in the future development of the Independence Boulevard corridor.

Today's Independence Boulevard has the look of a rural highway passing through a dense, deciduous forest. As the area converts to more of a business/commercial-type corridor, the roadway should be modeled as a landscaped boulevard with broad stretches of lawn and preserved groupings of trees. Large size canopy trees could line the boulevard at a regular interval of about 67 feet, centered between the existing light standards. Viewed from either direction, this layout would achieve a sense of order and spatial continuity while at the same time permitting lateral views of proposed commercial developments (See Exhibit 27).

Because Zelkova trees are a reliable street tree and they already exist along Independence Boulevard, it is suggested that they be planted at both ends of the road as well as continuing to adorn the entire length of road. To avoid monotony, additional varieties of large canopy trees could be intermingled among the Zelkovas.

Small, multi-trunk flowering trees could be used in the boulevard median. Multitrunk trees are preferred because they occupy more space and offer greater visual interest than individual, single trunk specimens. For greater visual impact, it is suggested that single species be planted in uniform blocks. Median-planting species should alternate at mid-block locations and mirror at intersecting crossroads. Ornamental tree plantings should also be planted in sequence with paired street trees and skipped opposite light fixtures for better light throw (See Exhibits 27 and 29).

Landscape plantings fronting proposed building parcels should be artfully clumped to accentuate natural landforms and soften large building masses. Trees of a scale to have a meaningful impact on the anticipated large commercial or industrial buildings should be favored to small, individually planted ornamental or flowering trees (See Exhibit 28).

Where slopes exceed a practically mowable gradient, it is suggested that lowmaintenance shrubs or groundcover be established. These should be planted in bold swathes to be in scale with the parkway landscape setting. If establishing groundcover or shrubs proves cost-prohibitive, Weeping Lovegrass (*Eragrostis curvula*) might be considered. Weeping Lovegrass is fast-growing, easily established from seed, and requires fewer mowings due to its weeping habit.

Since a desired outcome is to make Independence Boulevard a *gateway* to the community, it is important that both ends of the road are aesthetically pleasing although the typical cross-section would be a four-lane, undivided, curb and gutter facility with sidewalks on both sides of the road. To accomplish this outcome, increased plantings along the shoulders of the road would be needed. At East Main Street, the west side of the intersection is currently bracketed by a matched row of handsome Zelkova trees. It is

suggested that this species also be installed at the intersection's east corner. Consideration could also be given to providing some type of identification signing in this area as well as Forest Road (*provided the signing conforms with current City of Bedford's and VDOT's guidelines and regulations*). Since Bradford Pear trees are typically fragile, it is suggested that all Bradford Pear trees be replaced with Zelkovas throughout the entire corridor (See Exhibit 29).

• Encourage the use of various plantings (*per VDOT guidelines*) to enhance the aesthetics of the corridor as a *gateway* to the community without compromising the safety of the traveling public.

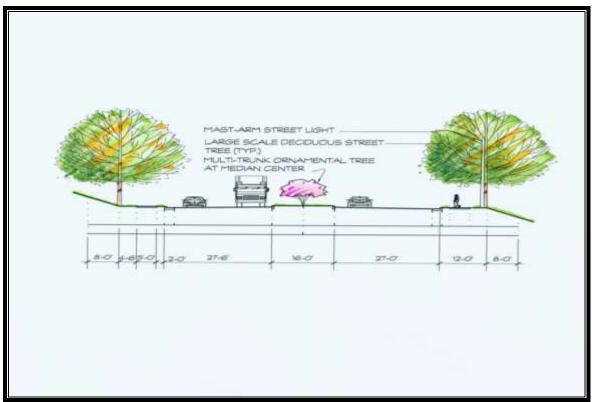


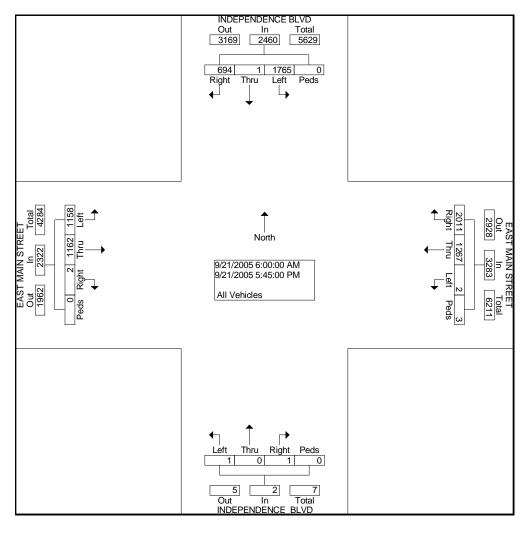
Exhibit 27 – Typical Landscaping Along Independence Boulevard

Exhibit 28 – Typical Landscaping Near East Main Street

Exhibit 29 – Typical Landscaping Near Commercial Development

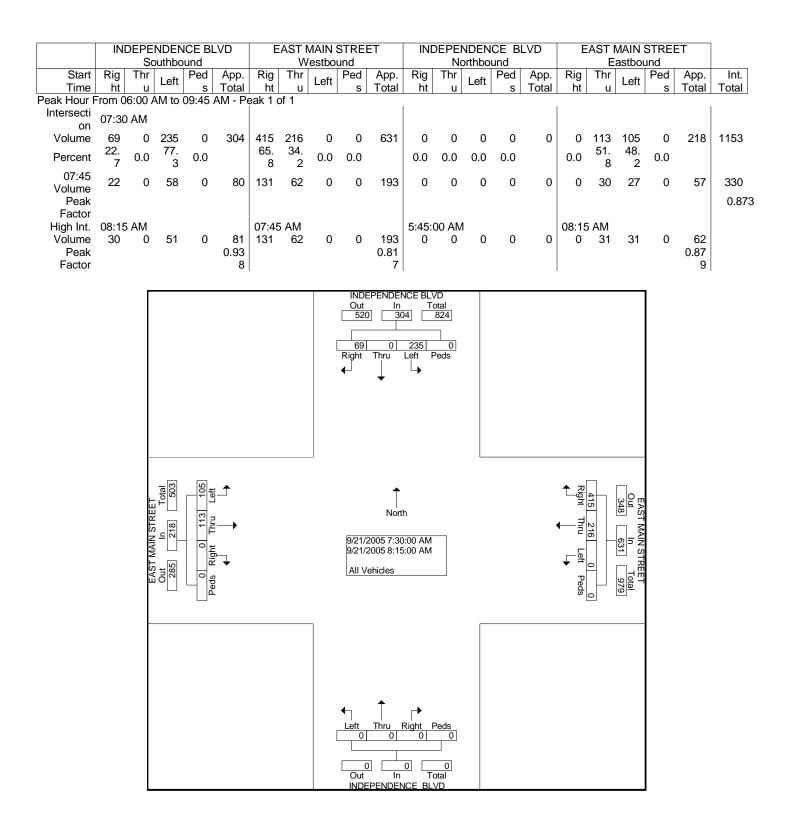
(This space intentionally left blank)

APPENDIX A


Tri-State Traffic Data, Inc. 184 Baker Road Coatesville, PA 19320 ain S 610-466-1469

Location: Bedford, VA Coatesville, PA 193 Intersection: Independence Blvd/E Main S 610-466-1469 Date: Wednesday, September 21, 2005 Counter: MM

File Name	: BedfordA
Site Code	: 00000000
Start Date	: 9/21/2005
Page No	: 1


										Printed-											
	INI				_VD	E	-	MAIN S		ET	INE			CE BI	_VD	E		MAINS		ET	
Start	Rig	Thr	outhbo	Ped	App.	Rig	Thr	estbou	Ped	App.	Rig	Thr	orthbo	Ped	App.	Rig	 Thr	astbou	Ped	App.	Int.
Time	ht	u	Left	S	Total	ht	u	Left	s	Total	ht	u	Left	S	Total	ht	u	Left	S	Total	Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
06:00 AM	2	0	17	0	19	21	11	0	0	32	1	0	1	0	2	0	13	15	0	28	81
06:15 AM	5	0	23	0	28	48	15	0	0	63	0	0	0	0	0	0	21	8	0	29	120
06:30 AM 06:45 AM	6 10	0 0	27 48	0 0	33 58	84 91	33 27	0 0	1 0	118 118	0 0	0 0	0 0	0 0	0	0 0	37 22	17 24	0 0	54 46	205 222
Total	23	0	115	0	138	244	86	0	1	331	1	0	1	0	2	0	93	64	0	157	628
		-								- · · ·	-			-							
07:00 AM 07:15 AM	10 3	0 0	66	0	76 50	58 71	23 24	0 0	0 1	81	0	0	0	0	0	0	36 21	12	0	48 39	205 185
07:15 AM 07:30 AM	3 9	0	47 66	0 0	50 75	79	24 51	0	0	96 130	0 0	0 0	0 0	0 0	0	0 0	21 25	18 23	0 0	39 48	253
07:45 AM	22	ŏ	58	Ő	80	131	62	Ő	Ő	193	Ő	Ő	Ő	Ő	ŏ	Ő	30	27	Ő	57	330
Total	44	0	237	0	281	339	160	0	1	500	0	0	0	0	0	0	112	80	0	192	973
08:00 AM	8	0	60	0	68	118	49	0	0	167	0	0	0	0	0	0	27	24	0	51	286
08:15 AM	30	Ő	51	Ő	81	87	54	Ő	Ő	141	Ő	Ő	Ő	Ő	ő	Ő	31	31	Ő	62	284
08:30 AM	21	Ō	45	Ō	66	51	44	Ō	Ō	95	0	Ō	Ō	0	Ō	0	30	26	0	56	217
08:45 AM	12	1	45	0	58	69	44	0	0	113	0	0	0	0	0	0	33	26	0	59	230
Total	71	1	201	0	273	325	191	0	0	516	0	0	0	0	0	0	121	107	0	228	1017
*** BREAK *	**																				
11:00 AM	16	0	40	0	56	40	40	0	1	81	0	0	0	0	0	0	19	32	0	51	188
11:15 AM	20	0	40	0	60	57	25	0	0	82	0	0	0	0	0	0	31	46	0	77	219
11:30 AM	23	0	49	0	72	33	33	0	0	66	0	0	0	0	0	0	37	40	0	77	215
<u>11:45 AM</u> Total	<u>38</u> 97	0	<u>39</u> 168	0	77 265	<u>46</u> 176	<u>35</u> 133	0	0	81 310	0	0	0	0	0	0	35 122	<u>57</u> 175	0	92 297	<u>250</u> 872
TULAI	51	0	100	0	205	170	155	0	1	310	0	0	0	0	0	0	122	175	0	291	072
12:00 PM	30	0	56	0	86	54	37	0	0	91	0	0	0	0	0	0	37	54	0	91	268
12:15 PM 12:30 PM	22 24	0 0	36 43	0 0	58 67	41 43	34 34	0 0	0 0	75 77	0 0	0 0	0 0	0 0	0	0 0	32 24	57 50	0 0	89 74	222 218
12:30 PM	24	0	43 45	0	70	48	43	0	0	91	0	0	0	0	0	0	34	40	0	74	235
Total	101	0	180	0	281	186	148	0	0	334	0	0	0	0	0	0	127	201	0	328	943
*** BREAK *	**																				
03:00 PM	26	0	69	0	95	69	43	1	0	113	0	0	0	0	0	1	41	32	0	74	282
03:15 PM	33	0	76	0	109	48	36	0	0	84	0	0	0	0	0	0	48	55	0	103	296
03:30 PM	47	Ō	102	Ō	149	70	48	Ō	Ō	118	0	Ō	Ō	0	Ō	0	49	36	0	85	352
03:45 PM	32	0	78	0	110	71	48	0	0	119	0	0	0	0	0	0	47	34	0	81	310
Total	138	0	325	0	463	258	175	1	0	434	0	0	0	0	0	1	185	157	0	343	1240
04:00 PM	28	0	51	0	79	64	55	0	0	119	0	0	0	0	0	0	56	57	0	113	311
04:15 PM	28	0	73	0	101	47	46	0	0	93	0	0	0	0	0	0	47	47	0	94	288
04:30 PM	23	0	57	0	80	60	41	0	0	101	0	0	0	0	0	0	43	47	0	90	271
04:45 PM Total	<u>31</u> 110	0	62 243	0	93 353	<u>61</u> 232	<u> 56 </u> 198	0	0	<u> 117</u> 430	0	0	0	0	0	0	<u> </u>	<u> </u>	0	73 370	<u>283</u> 1153
TULAI	110	0	243	0	555	232	190	0	0	430	0	0	0	0	0	0	105	107	0	570	1155
05:00 PM	19	0	88	0	107	62	41	0	0	103	0	0	0	0	0	0	87	60	0	147	357
05:15 PM	39	0	67	0	106	59	39	0	0	98	0	0	0	0	0	0	50	46	0	96	300
05:30 PM 05:45 PM	32	0	67 74	0	99 94	69 61	41 55	0	0	110	0 0	0 0	0	0 0	0	1	49	45 36	0	95 69	304 280
Total	<u>20</u> 110	0	74 296	0	406	251	176	<u>1</u> 1	0	<u>117</u> 428	0	0	0	0	0	<u>0</u> 1	<u>33</u> 219	187	0	407	1241
Grand			176			201	106										116	115			
Grand Total	694	1	176 5	0	2460	201 1	126 7	2	3	3283	1	0	1	0	2	2	116 2	115 8	0	2322	8067
Apprch %	28.	0.0	71.	0.0		61.	38.	0.1	0.1		50.	0.0	50.	0.0		0.1	50.	49.	0.0		
	2	0.0	7 21	0.0		3 24	6 15		0.1		0	0.0	0	0.0			0	9 14	0.0		
Total %	8.6	0.0	21. 9	0.0	30.5	24. 9	15. 7	0.0	0.0	40.7	0.0	0.0	0.0	0.0	0.0	0.0	14. 4	14. 4	0.0	28.8	
			0		I	0	,			I					I		-	-		I	

Tri-State Traffic Data, Inc.
184 Baker RoadLocation: Bedford, VACoatesville, PA 19320File Name : BedfordAIntersection: Independence Blvd/E Main S 610-466-1469Site Code : 0000000Date: Wednesday, September 21, 2005Start Date : 9/21/2005Counter: MMPage No : 2

Tri-State Traffic Data, Inc. 184 Baker Road Location: Bedford, VA Intersection: Independence Blvd/E Main S 610-466-1469 Date: Wednesday, September 21, 2005 Counter: MM

File Name : BedfordA Site Code : 0000000 Start Date : 9/21/2005 Page No : 3

Tri-State Traffic Data, Inc. 184 Baker Road Location: Bedford, VA Intersection: Independence Blvd/E Main S 610-466-1469 Date: Wednesday, September 21, 2005 Counter: MM

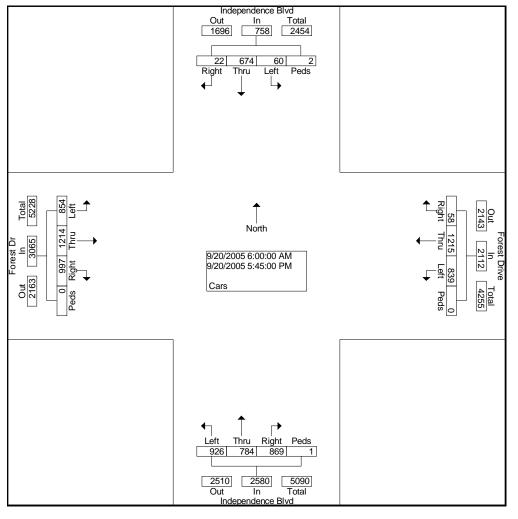
File Name : BedfordA Site Code : 0000000 Start Date : 9/21/2005 Page No : 4

	INE		NDEN	ICE BL	VD	E		MAIN :	STREI und	ET	INE		NDEN orthbo	CE BI und	_VD	E		MAIN : astbou	STREE	ΞT	
Start Time	Rig	Thr	Left	Ped	App. Total	Rig	Thr	Left	Ped s	App. Total	Rig	Thr	Left	Ped s	App. Total	Rig ht	Thr	Left	Ped s	App. Total	Int. Total
Peak Hour F	ht From 1	u 0:00 A	AM to	s 01:45		eak 1 c	u of 1		5	TULAI	ht	u		5	TULAI		u		5	TULAI	TOLAT
Intersecti on	11:45	AM																			
Volume	114	0	174	0	288	184	140	0	0	324	0	0	0	0	0	0	128	218	0	346	958
Percent	39. 6	0.0	60. 4	0.0		56. 8	43. 2	0.0	0.0		0.0	0.0	0.0	0.0		0.0	37. 0	63. 0	0.0		
12:00 Volume	30	0	56	0	86	54	37	0	0	91	0	0	0	0	0	0	37	54	0	91	268
Peak																					0.894
Factor High Int.	12:00	PM				12:00	PM									11:45	5 AM				
Volume Peak	30	0	56	0	86 0.83	54	37	0	0	91 0.89	0	0	0	0	0	0	35	57	0	92 0.94	
Factor					0.83 7					0.89										0.94	
		_																	r.		
									Out		Тс	otal									
									402	2 28	88	690									
									114 Right	0 Thru	174 Left F										
												eus									
										•											
			Out In Total 254 346 600	218 eft	_					↑						Right					
		R F F T								Nort	h						184	Out 302			
		I S L	ln 346	128 Thru	\rightarrow				0/21/2	005 11:4							140				
		MAIN		Right 0						2005 11:43						₽		IN ST			
		AST	254						All Ve	ehicles							0	MAIN STREET			
		ш		Peds												Peds	0	ET Total 626			
]													
									€	_											
									Left	Thru I	Right F	Peds 0									
									Out			0 otal									
											NUE DL	0							I		

Tri-State Traffic Data, Inc. 184 Baker Road Location: Bedford, VA Intersection: Independence Blvd/E Main S 610-466-1469 Date: Wednesday, September 21, 2005 Counter: MM

File Name : BedfordA Site Code : 0000000 Start Date : 9/21/2005 Page No : 5

	INE		NDEN	ICE BL	VD	E		MAIN estbo	STREI und	ET	INE		NDEN orthbo	CE B	LVD	E		MAIN : astbou	STREE	ΞT	
Start Time	Rig ht	Thr u	Left	Ped s	App. Total	Rig ht	Thr u	Left	Ped s	App. Total	Rig ht	Thr u	Left	Ped s	App. Total	Rig ht	Thr u	Left	Ped s	App. Total	Int. Total
Peak Hour F		-	PM to						5	TULAI		u		5	Total	<u> </u>	u		5	Total	TULAI
Intersecti on	03:15	PM																			
Volume	140	0	307	0	447	253	187	0	0	440	0	0	0	0	0	0	200	182	0	382	1269
Percent	31. 3	0.0	68. 7	0.0		57. 5	42. 5	0.0	0.0		0.0	0.0	0.0	0.0		0.0	52. 4	47. 6	0.0		
03:30 Volume	47	0	102	0	149	70	48	0	0	118	0	0	0	0	0	0	49	36	0	85	352
Peak																					0.901
Factor High Int.	03:30	PM				03:45	PM									04:00	PM				
Volume Peak	47	0	102	0	149 0.75	71	48	0	0	119 0.92	0	0	0	0	0	0	56	57	0	113 0.84	
Factor					0.75					0.92 4										0.84 5	
		_																			
									Out		To	otal									
									435	5 44	17	882									
									140		307	0									
									Right ↓	Thru	Left F	eds									
										+											
			[al	182 Left	•											<u>↑</u> ヱ		Π-			
			Out In Total 327 382 709							Nort	h					Right	253	Out 507			
		STR	82	200 Thru	\rightarrow					Non						€	187				
		AAIN		Riaht -						2005 3:15 2005 4:00						-		In 440			
		ST N	54							ehicles						-	0				
		ΔA	٥ ۵	Peds					7 41 7	01110100						Peds		ET Total 947			
																	0				
		_						٦													
									€	↑	-										
									Left												
									0	0	0	0									
											0	0									
		L							Out INDE	In EPENDEN											


Tri-State Traffic Data, Inc. 184 Baker Road Coatesville, PA 19320 est D 610-466-1469

Location: Bedford, VA Coatesville, PA 193 Intersection: Independence Blvd/Forest D 610-466-1469 Date: Tuesday, September 20, 2005 Counter: PF

File Name	: BedfordD
Site Code	: 00000000
Start Date	: 9/20/2005
Page No	: 1

Counter	PF								Grou	ina Drin	tod C	ore					Pa	ge N	0	:1	
		Indep	enden	ce Blv	d		Fo	rest D		ıps Prin			enden	ce Blv	d		F	orest	Dr		
			outhbo		~			estbo					orthbo					astbou			
Start	Rig	Thr	Left	Ped	App.	Rig	Thr	Left	Ped	App.	Rig	Thr	Left	Ped	App.	Rig	Thr	Left	Ped	App.	_Int.
Time	ht	u 1 0		S	Total	ht	u 1 0		S	Total	ht	U 10		S	Total	ht	u 10		S	Total	Total
Factor 06:00 AM	1.0 0	1.0 7	1.0 0	1.0 0	7	<u>1.0</u>	1.0 8	<u>1.0</u> 10	<u>1.0</u>	19	1.0 16	1.0 3	1.0 5	1.0 0	24	1.0 9	1.0 11	1.0 4	1.0 0	24	74
06:00 AM	0	11	1	0	12	0	16	25	0	41	17	15	8	0	24 40	18	19	10	0	24 47	140
06:30 AM	1	27	1	0 0	29	1	22	13	0	36	21	12	19	1	53	14	27	8	0	49	167
06:45 AM	0	40	0	Õ	40	0	30	31	Õ	61	21	10	17	0	48	27	17	7	Õ	51	200
Total	1	85	2	0	88	2	76	79	0	157	75	40	49	1	165	68	74	29	0	171	581
07:00 AM	0	11	2	0	13	0	21	26	0	47	22	11	16	0	49	25	21	7	0	53	162
07:15 AM	0	21	1	0	22	1	39	30	0	70	28	17	23	0	68	30	42	19	0	91	251
07:30 AM	2	17	0	0	19	5	34	24	0	63	28	26	20	0	74	38	39	25	0	102	258
07:45 AM	1	35	1	0	37	1	52	36	0	89	34	53	28	0	115	29	33	35	0	97	338
Total	3	84	4	0	91	7	146	116	0	269	112	107	87	0	306	122	135	86	0	343	1009
08:00 AM	0	41	2	1	44	3	37	23	0	63	32	65	27	0	124	26	29	75	0	130	361
08:15 AM	0	43	5	0	48	1	47	21	0	69	29	38	25	0	92	31	34	41	0	106	315
08:30 AM 08:45 AM	1 0	19 16	3 0	0 0	23 16	2 1	32 34	19 22	0 0	53 57	14 29	17 14	26 17	0 0	57 60	22 27	39 31	12 14	0	73 72	206 205
Total	1	119	10	1	131	7	150	85	0	242	104	134	95	0	333	106	133	142	0	381	1087
*** BREAK *	**																				
11:00 AM	0	18	1	0	19	0	25	19	0	44	21	11	25	0	57	19	34	17	0	70	190
11:15 AM	1	8	1	ŏ	10	3	21	22	Ő	46	17	9	24	Ő	50	30	40	22	Ő	92	198
11:30 AM	0	8	1	Ō	9	2	36	15	Ō	53	23	18	28	Ō	69	36	35	18	Ō	89	220
11:45 AM	0	16	1	0	17	1	38	25	0	64	20	13	32	0	65	21	30	11	0	62	208
Total	1	50	4	0	55	6	120	81	0	207	81	51	109	0	241	106	139	68	0	313	816
12:00 PM	1	11	1	1	14	2	30	25	0	57	28	22	42	0	92	29	48	17	0	94	257
12:15 PM	2	9	5	0	16	5	43	23	0	71	34	15	37	0	86	42	43	15	0	100	273
12:30 PM	0	13	4	0	17	1	22	29	0	52	20	13	31	0	64	33	19	13	0	65	198
12:45 PM Total	<u>1</u>	<u>20</u> 53	<u>1</u> 11	0	<u>22</u> 69	08	<u>33</u> 128	<u>23</u> 100	0	56 236	17 99	<u>15</u> 65	<u>39</u> 149	0	71 313	35 139	<u>32</u> 142	<u>16</u> 61	0	83 342	<u>232</u> 960
*** BREAK *	•	00		•	00	Ū	120	100	Ū	200	00	00	110	Ŭ	010	100		01	Ū	012	000
		45	•	•	10		00		•	00		40	07	•	110		0.4	40	0	07	005
03:00 PM 03:15 PM	0 1	15 55	3 4	0 0	18 60	4 2	38 45	26 40	0 0	68 87	39 33	46 37	27 34	0 0	112 104	34 33	21 43	42 49	0 0	97 125	295 376
03:30 PM	0	32	2	0	34	2	40	26	0	68	31	31	44	0	104	38		36	0	130	338
03:45 PM	2	22	4	Ő	28	3	67	33	Õ	103	38	33	32	Õ	103	42	54	39	Ő	135	369
Total	3	124	13	0	140	11	190	125	0	326	141	147	137	0	425	147	174	166	0	487	1378
04:00 PM	0	20	3	0	23	2	43	35	0	80	32	32	30	0	94	39	39	29	0	107	304
04:15 PM	1	22	0	0	23	2	59	31	0	92	17	25	24	0	66	29	41	23	0	93	274
04:30 PM	1	17	1	0	19	2	39	29	0	70	35	26	45	0	106	31	39	31	0	101	296
04:45 PM Total	<u>1</u> 3	<u>16</u> 75	<u>2</u> 6	0	<u>19</u> 84	<u>1</u> 7	<u>45</u> 186	<u>18</u> 113	0	64 306	28 112	23 106	<u>34</u> 133	0	<u>85</u> 351	35 134	<u>47</u> 166	<u>34</u> 117	0	<u>116</u> 417	<u>284</u> 1158
	Ţ			-					-					-							
05:00 PM	0	20	4	0	24	2	45	44 25	0	91	37	31	55	0	123	52	65 65	55 47	0	172	410
05:15 PM 05:30 PM	1 3	23 22	3 1	0 0	27 26	3 2	63 62	35 32	0 0	101 96	37 39	36 32	39 41	0 0	112 112	43 41	65 62	47 41	0 0	155 144	395 378
05:45 PM	2	19	2	0	20	2	49	29	0	81	32	35	32	0	99	39	59	42	0	140	343
Total	6	84	10	0	100	10	219	140	0	369	145	134	167	0	446	175	251	185	0	611	1526
Grand	00	674	~~	~	750	50	121	000	^	2440	000	704	000	4	0500	007	121	054	~	2005	0545
Total	22	674	60	2	758	58	5	839	0	2112	869	784	926	1	2580	997	4	854	0	3065	8515
Apprch %	2.9	88. 9	7.9	0.3		2.7	57. 5	39. 7	0.0		33. 7	30. 4	35. 9	0.0		32. 5	39. 6	27. 9	0.0		
Total %	0.5	-	07	0.0	00	07	14.	-	0.0	210	10.	9.2	10.	0.0	20.2	11.	14.	10.	0.0	36.0	
Total %	0.3	7.9	0.7	0.0	8.9	0.7	3	9.9	0.0	24.8	2	9.2	9	0.0	30.3	7	3	0	0.0	36.0	

Tri-State Traffic Data, Inc. 184 Baker Road Location: Bedford, VA Intersection: Independence Blvd/Forest D 610-466-1469 Date: Tuesday, September 20, 2005 Counter: PF

File Name : BedfordD Site Code : 0000000 Start Date : 9/20/2005 Page No : 3

			enden outhbo		d			rest D estbo					enden orthbo	ce Blv	d			orest astbou			
Start		Thr	Left	Ped	App.	Rig	Thr	Left	Ped	App.	Rig	Thr	Left	Ped	App.	Rig	Thr	Left	Ped	App.	Int.
Time Peak Hour F	ht -rom 0	u 6:00 A		s 09:45 /	Total AM - Pe	ht eak 1 c	u of 1	Lon	S	Total	ht	u	Lon	S	Total	ht	u	Lon	S	Total	Total
Intersecti	07:30																				
on Volume	3	136	8	1	148	10	170	104	0	284	123	182	100	0	405	124	135	176	0	435	1272
Percent	2.0	91. 9	5.4	0.7	110	3.5	59. 9	36. 6	0.0	201	30. 4	44. 9	24. 7	0.0	100	28. 5	31. 0	40. 5	0.0	100	
08:00 Volume Peak	0	41	2	1	44	3	37	23	0	63	32	65	27	0	124	26	29	75	0	130	361 0.881
Factor																					0.001
High Int. Volume Peak Factor	08:15 0	5 AM 43	5	0	48 0.77 1	07:45 1	AM 52	36	0	89 0.79 8	08:00 32	0 AM 65	27	0	124 0.81 7	08:00 26) AM 29	75	0	130 0.83 7	
									In Out 368	depender In 3 14	T	otal 516									
								[3	136	8	1									
									Right ↓	Thru ↓	Left F	Peds									
			Total 708	176 eft	•											↑ हा					
				135 1 Thru Le						Nort	h						_	Out 266			
		Forest D	435 435	124 Right Th						2005 7:30 2005 8:15						ł	70 1	orest Drive			
			Out 273	Peds Ri					Cars							Left Peds		ve Total 550			
																<u></u>	0	0_			
									€_	Ť	,→										
								[Left 100	Thru 182	Right I 123	Peds 0									
										In	T	769 otal									
								1	In	depende	ICE BIVO										

Tri-State Traffic Data, Inc. 184 Baker Road Location: Bedford, VA Intersection: Independence Blvd/Forest D 610-466-1469 Date: Tuesday, September 20, 2005 Counter: PF

File Name : BedfordD Site Code : 0000000 Start Date : 9/20/2005 Page No : 4

	I		enden outhbo	ce Blvo und	d			orest D estbo					enden orthbo	ce Blvo und	d			orest astbou			
Start Time	Rig ht	Thr u	Left	Ped s	App. Total	Rig ht	Thr u	Left	Ped s	App. Total	Rig ht	Thr u	Left	Ped s	App. Total	Rig ht	Thr u	Left	Ped s	App. Total	Int. Total
Peak Hour F	From 1	0:00 A	AM to		PM - Pe					Total	11()	u			Total		u			Total	Total
on	12:00			4	60	0	400	400	0	000	00	05	4.40	0	040	400	4.40	04	0	0.40	000
Volume Percent	4 5.8	53 76. 8	11 15. 9	1 1.4	69	8 3.4	128 54. 2	100 42. 4	0 0.0	236	99 31. 6	65 20. 8	149 47. 6	0 0.0	313	139 40. 6	142 41. 5	61 17. 8	0 0.0	342	960
12:15 Volume	2	9	5	0	16	5	43	23	0	71	34	15	37	0	86	42	43	15	0	100	273
Peak Factor High Int. Volume Peak Factor	12:45 1	PM 20	1	0	22 0.78 4	12:15 5	5 PM 43	23	0	71 0.83 1	12:00 28	PM 22	42	0	92 0.85 1	12:15 42	5 PM 43	15	0	100 0.85 5	0.879
									In Out 134	depender In	Тс	otal 203									
									4 Right	53 Thru	11 Left F	1 Peds									
									€-	¥											
			Total 623	Left						↑ Nort	h					Right	8	Out 252			
		Forest Dr	342	139 142 Right Thru						005 12:0 005 12:4	0:00 PM					[128	Forest Drive			
			Out 281	Peds Ric					Cars							Ped	8	ve Total 488			
		-																			
									Left 149	Thru 65	Right F	Peds									
									292 Out In	2 31 In depender	To	605 otal									

Tri-State Traffic Data, Inc. 184 Baker Road Location: Bedford, VA Intersection: Independence Blvd/Forest D 610-466-1469 Date: Tuesday, September 20, 2005 Counter: PF

File Name: BedfordDSite Code: 0000000Start Date: 9/20/2005Page No: 5

			enden outhbo	ce Blvo ound	d			orest D estbo					enden orthbo	ce Blv	d			orest astbou			
Start Time	Rig ht	Thr u	Left	Ped s	App. Total	Rig ht	Thr u	Left	Ped s	App. Total	Rig ht	Thr u	Left	Ped s	App. Total	Rig ht	Thr u	Left	Ped s	App. Total	Int. Total
Peak Hour F			PM to						3	Total	<u>, nc</u>	u		3	Total	<u> </u>	u		3	Total	
Intersecti on	05:00	PM																			
Volume	6	84	10	0	100	10	219	140	0	369		134	167	0	446	175	251	185	0	611	1526
Percent	6.0	84. 0	10. 0	0.0		2.7	59. 3	37. 9	0.0		32. 5	30. 0	37. 4	0.0		28. 6	41. 1	30. 3	0.0		
05:00 Volume	0	20	4	0	24	2	45	44	0	91	37	31	55	0	123	52	65	55	0	172	410
Peak																					0.930
Factor High Int.	05:15	РM				05:15	рМ				05:00	DM				05:00) PM				
Volume	1	23	3	0	27	3	63	35	0	101	37	31	55	0	123	52	65	55	0	172	
Peak Factor					0.92 6					0.91 3					0.90 7					0.88 8	
					U	I				Ũ	I					I				Ũ	
		Γ							In Out	depender In		otal									
									329			429									
									6	84	10	0									
									Right		Left F	Peds									
									←	¥	╘										
		-																			
			-0	ما	•											• -					
			Total 1003	185 Left						Î						Right	10	Out 406			
		-		251 Thru	`					Nort	th					. =		<u> </u>			
		Forect Dr	611							2005 5:00						←_ħ	219	-orest Drive			
		EO.	5 L	175 Right	, T					2005 5:45	5:00 PM					L et	140	st Drive In 369			
			Out 392						Cars							. 1		Total 775			
																Peds	0	al 75			
										•											
									┫	Ť	\vdash										
									Left 167	Thru 134	Right I 145	Peds 0									
									399 Out	In		845 otal									
		L							In	depender	nce Blvd								l		

APPENDIX B

<u>Traffic Growth Worksheet</u> East Main Street and Independence Blvd

AM PEAK HOUR 7:30 - 8:30

Growth Rate = 1.5%

Growth Time Period = 25.00 years

	Existing Traffic	Background Traffic
Northbound Lefts	0	0
Northbound Thrus	0	0
Northbound Rights	0	0
Southbound Lefts	235	323
Southbound Thrus	0	0
Southbound Rights	69	95
Westbound Lefts	0	0
Westbound Thrus	216	297
Westbound Rights	415	571
Eastbound Lefts	105	144
Eastbound Lefts Thrus	113	155
Eastbound Rights	0	0
Totals =	1,153	1,585

<u>Traffic Growth Worksheet</u> East Main Street and Independence Blvd

PM PEAK HOUR 3:15 - 4:15

Growth Rate = 1.5%

Growth Time Period = 25.00 years

	Existing Traffic	Background Traffic
Northbound Lefts	0	0
Northbound Thrus	0	0
Northbound Rights	0	0
Southbound Lefts	307	422
Southbound Thrus	0	0
Southbound Rights	140	193
Westbound Lefts	0	0
Westbound Thrus	187	257
Westbound Rights	253	348
Eastbound Lefts	182	250
Eastbound Lefts Thrus	200	275
Eastbound Rights	0	0
Totals =	1,269	1,745

<u>Traffic Growth Worksheet</u> <u>Forest Road and Independence Blvd</u>

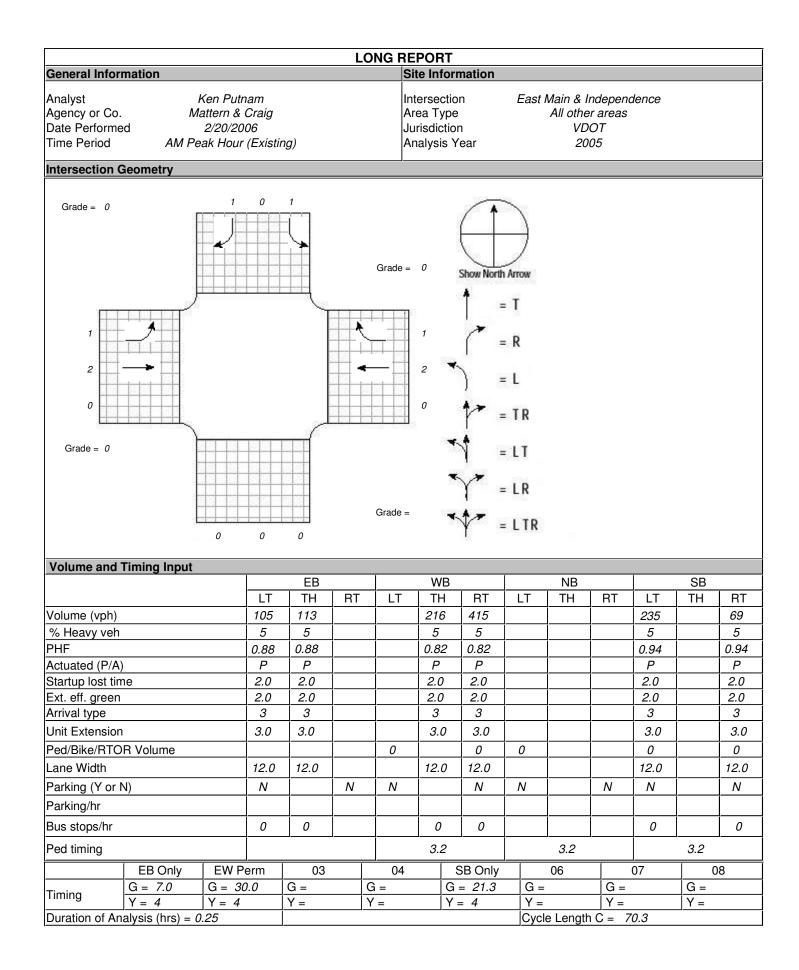
AM PEAK HOUR 7:30 - 8:30

Growth Rate = 1.5%

Growth Time Period = 25.00 years

	Existing Traffic	Background Traffic
Northbound Lefts	100	138
Northbound Thrus	182	250
Northbound Rights	123	169
Southbound Lefts	8	11
Southbound Thrus	136	187
Southbound Rights	3	4
Westbound Lefts	104	143
Westbound Thrus	170	234
Westbound Rights	10	14
Eastbound Lefts	176	242
Eastbound Lefts Thrus	135	186
Eastbound Rights	124	171
Totals =	1,271	1,748

<u>Traffic Growth Worksheet</u> <u>Forest Road and Independence Blvd</u>


PM PEAK HOUR 5:00 - 6:00

Growth Rate = 1.5%

Growth Time Period = 25.00 years

	Existing Traffic	Background Traffic
Northbound Lefts	167	230
Northbound Thrus	134	184
Northbound Rights	145	199
Southbound Lefts	10	14
Southbound Thrus	84	116
Southbound Rights	6	8
Westbound Lefts	140	193
Westbound Thrus	219	301
Westbound Rights	10	14
Eastbound Lefts	185	254
Eastbound Lefts Thrus	251	345
Eastbound Rights	175	241
Totals =	1,526	2,098

APPENDIX C

VOLUME ADJUSTMENT AND SATURATION FLOW RATE WORKSHEET

General Information

Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

Volume Adjustment												
		EB			WB			NB			SB	
	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT
Volume	105	113			216	415				235		69
PHF	0.88	0.88			0.82	0.82				0.94		0.94
Adj. Flow Rate	119	128			263	506				250		73
Lane Group	L	<i>т</i>			T	R				L		R
Adj. flow rate	119	128			263	506				250		73
Prop. LT or RT	0.000		0.000	0.000		0.000						
Saturation Flow Rate		1.	1.	1	1.	1	1.	1	I	J	1	J
Base satflow	1900	1900			1900	1900				1900		1900
Num. of lanes	1	2	0	0	2	1	0	0	0	1	0	1
fW	1.000	1.000			1.000	1.000				1.000		1.000
fHV	0.952	0.952			0.952	0.952				0.952		0.952
fg	1.000	1.000			1.000	1.000				1.000		1.000
fp	1.000	1.000			1.000	1.000				1.000		1.000
fbb	1.000	1.000			1.000	1.000				1.000		1.000
fa	1.000	1.000			1.000	1.000				1.000		1.000
fLU	1.000	0.952			0.952	1.000				1.000		1.000
fLT	0.950	1.000			1.000					0.950		
Secondary fLT	0.532											
fRT		1.000			1.000	0.850						0.850
fLpb	1.000	1.000			1.000					1.000		
fRpb		1.000			1.000	1.000						1.000
Adj. satflow	1719	3445			3445	1538				1719		1538
Sec. adj. satflow	962											

CAPACITY AND LOS WORKSHEET

General Information

Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

		-									
Capacity Analysis											
		EB		WB			NB			SB	
Lane group	L	T		Т	R				L		R
Adj. flow rate	119	128		263	506				250	<u> </u>	73
Satflow rate	1719	3445		3445	1538				1719		1538
Lost time	2.0	2.0		2.0	2.0			2.0		2.0	
Green ratio	0.58	0.58	0.43 0.79 0								0.30
Lane group cap.	636	2009		1470	1210	521		466			
v/c ratio	0.19	0.06		0.18	0.42		0.48		0.16		
Flow ratio		0.04 0.08 0.33 0.15									0.05
Crit. lane group											Ν
Sum flow ratios					0.4	40					
Lost time/cycle					8.0	00					
Critical v/c ratio					0.4	15					
Lane Group Capacity,	Control Delay	, and LOS De	etermina	ation							
		EB		WB			NB			SB	
Lane group	L	T		Т	R				R		
Adj. flow rate	119	128		263	506				250		73
Lane group cap.	636	2009		1470	1210				521		466
v/c ratio	0.19	0.06		0.18	0.42				0.48		0.16
Green ratio	0.58	0.58		0.43	0.79				0.30		0.30
Unif. delay d1	6.6	6.3		12.5	2.4				20.0		17.9
Delay factor k	0.50	0.50		0.50	0.50				0.50		0.50
Increm. delay d2	0.7	0.1		0.3	1.1				3.1		0.7
PF factor	1.000	1.000		1.000	1.000				1.000		1.000
Control delay	7.3	6.4		12.8	3.4				23.1		18.6
Lane group LOS	A	A		В	A				С		В
Apprch. delay	E	5.8		6.6						22.1	
Approach LOS		A		Α						С	
Intersec. delay	1	0.4			Intersecti	ion LOS				В	

SUPPLEMENTAL UNIFORM DELAY WORKSHEET FOR LEFT TURNS FROM EXCLUSIVE LANES WITH PROTECTED AND PERMITTED PHASES

General Information

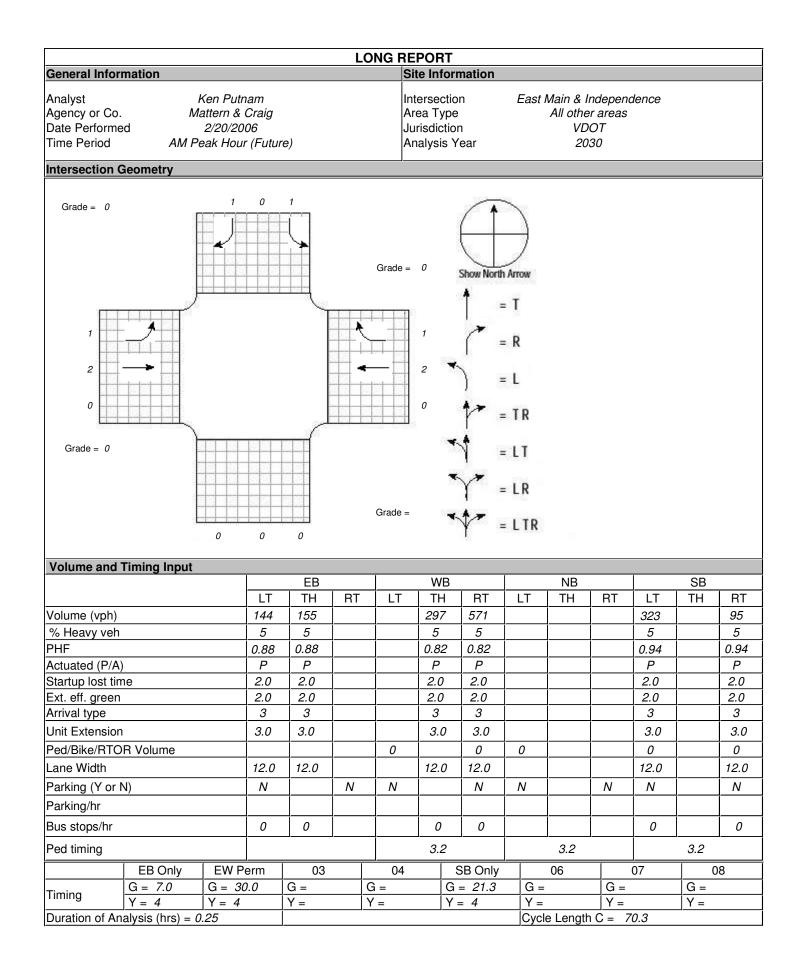
Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

v/c Ratio Computation

			EB		W	в	NB		SB			
Cycle length, C (s)						70.	3					
Prot. phase eff. green intvl,	g (s)		7.0									
Opposed queue eff. green	intvl, go	(S)	3.35									
Unopposed green intvl, gu	(s)		30.65									
Red time, r(s)			29.3									
Arrival rate, qa (veh/s)			0.03									
Prot. phase departure rate,	s _p (veł	n/s)	0.478									
Perm. phase departure rate	e, ss (ve	eh/s)	0.30									
Xperm			0.12									
Xprot (N/A for lagging left-tu	urns)		0.36									
Uniform Queue Size and	Delay (Computations						d.				
Queue at start of green arro	ow, Qa		0.97									
Queue at start of unsaturat	ed gree	n, Qu	0.11									
Residual queue, Qr			0.00									
Uniform delay, d1			6.6									
Uniform Queue Size and	Delay E	Equations										
	Case	Qa	Qu	Qr			dı					
If Xperm <= 1.0 & Xprot <= 1.0	1	qar	q a g q	0		[0.5/(qaC)][$rQ_a + Q_{a^{2/(}}S_{p}$	Դ₅) ₊ gզQւ	$_{I + Q_{U^{2/(}} S_{s_{-}} q_{a)}}$			
If Xperm <= 1.0 & Xprot > 1.0	2	q _a r	Qr + qagq	Qa - g(Sp	o - q a)	a) $\begin{bmatrix} 0.5/(q_aC) \end{bmatrix} [rQ_a + g(Q_a + Q_r) + g_q (Q_r + Q_u) + Q_u^{2/q_a} \end{bmatrix}$						
If Xperm > 1.0 & Xprot <= 1.0	3	Qr + qar	Qagq	Qu - gu(s	s - q a)	$-q_{a}) \begin{bmatrix} 0.5/(q_{a}C) \end{bmatrix} [g_{q}Q_{u} + g_{u}(Q_{a} + Q_{r}) + r(Q_{r} + Q_{a}) + Q_{a^{2}} \\ q_{a} \end{bmatrix}$						
If X _{perm} <= 1.0 (lagging lefts)	4	0	$q_a(r + g_q)$	0	$[0.5/(q_a C)][r + g_q)Q_u + Q_u^{2/(S_s - q_a)}$							
If Xperm > 1.0 (lagging lefts)	5	Qu - gu(ss - qa)	$q_a(r + g_q)$	0		$[0.5/(q_a C)][r + g_q)Q_u + g_u(Q_u + Q_a) + Q_a^{2/(S_{p}, Q_a)}$						

BACK-OF-QUEUE WORKSHEET

General Information


Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

Average Back of Queue												
		EB			WB			NB			SB	
	LT	<u> TH</u>	RT	LT	ТН	RT	LT	TH	RT	LT	TH	RT
Lane group	L	<u> </u>			<u> </u>	R				L		R
Init. queue/lane	0.0	0.0			0.0	0.0				0.0		0.0
Flow rate/lane	119	128			263	506				250		73
Satflow per lane	1091	1809			1809	1538				1719		1538
Capacity/lane	636	2009			1470	1210				521		466
Flow ratio	0.11	0.04			0.08	0.33				0.15		0.05
v/c ratio	0.19	0.06			0.18	0.42				0.48		0.16
I factor	1.000	1.000			1.000	1.000				1.000	1.000	1.000
Arrival type	3	3			3	3				3		3
Platoon ratio	1.00	1.00			1.00	1.00			ĺ	1.00		1.00
PF factor	1.00	1.00			1.00	1.00			ĺ	1.00		1.00
Q1	1.0	0.6			1.7	3.1				4.0		1.0
kв	0.7	1.0			0.8	1.1				0.6		0.6
Q2	0.2	0.1			0.2	0.8			ĺ	0.6		0.1
Q avg.	1.1	0.6			1.8	3.9				4.5		1.1
Percentile Back of Queue (95th	percenti	le)	·	,	,		1	·	1	1	4	
fB%	2.4	2.5	1		2.3	2.1				2.0		2.4
BOQ, Q%	2.7	1.6			4.2	8.1				9.1		2.7
Queue Storage Ratio	1.	,	,	,			,	,	,			
Q spacing	25.0	25.0			25.0	25.0				25.0		25.0
Q storage	0	0			0	0				0		0
Avg. Ra												
95% Rq%												
HCS2000TM	 	pyright © 20	000 Univer	sity of Flo	rida All Ri	ohts Reserve	-d		•		•	Version 4.1

 $HCS2000^{\text{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

Version 4.1f

VOLUME ADJUSTMENT AND SATURATION FLOW RATE WORKSHEET

General Information

Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

Volume Adjustment	1			1			1			1		
		EB			WB		ļ	NB		ļ	SB	
	LT	ТН	RT	LT	тн	RT	LT	ТН	RT	LT	ТН	RT
Volume	144	155			297	571	<u></u>			323		95
PHF	0.88	0.88			0.82	0.82				0.94		0.94
Adj. Flow Rate	164	176			362	696				344		101
Lane Group	L	Т			Т	R				L		R
Adj. flow rate	164	176			362	696				344		101
Prop. LT or RT	0.000		0.000	0.000		0.000						
Saturation Flow Rate		1		4	1 <u>.</u>	-1	·		1	·	J	1
Base satflow	1900	1900			1900	1900				1900		1900
Num. of lanes	1	2	0	0	2	1	0	0	0	1	0	1
fW	1.000	1.000			1.000	1.000				1.000		1.000
fHV	0.952	0.952			0.952	0.952				0.952		0.952
fg	1.000	1.000			1.000	1.000				1.000		1.000
fp	1.000	1.000			1.000	1.000				1.000		1.000
fbb	1.000	1.000			1.000	1.000				1.000		1.000
fa	1.000	1.000			1.000	1.000				1.000		1.000
fLU	1.000	0.952			0.952	1.000				1.000		1.000
fLT	0.950	1.000			1.000					0.950		
Secondary fLT	0.461											
fRT		1.000			1.000	0.850						0.850
fLpb	1.000	1.000			1.000					1.000		
fRpb		1.000			1.000	1.000						1.000
Adj. satflow	1719	3445			3445	1538				1719		1538
Sec. adj. satflow	834			1	1						1	

CAPACITY AND LOS WORKSHEET

General Information

Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

Capacity Analysis													
		EB		WB			NB			SB			
Lane group	L	T		Т	R				L		R		
Adj. flow rate	164	176		362	696				344		101		
Satflow rate	1719	3445		3445	1538	<u> </u>			1719		1538		
Lost time	2.0	2.0		2.0	2.0				2.0	ļ	2.0		
Green ratio	0.58	0.58		0.43	0.79	ļ			0.30	ļ	0.30		
Lane group cap.	574	2009		1470	1210				521	ļ	466		
v/c ratio	0.29	0.09		0.25	0.58				0.66		0.22		
Flow ratio		0.05		0.11	0.45				0.20		0.07		
Crit. lane group										N N N			
Sum flow ratios					0.5	55							
Lost time/cycle					8.0	00							
Critical v/c ratio					0.6	52							
Lane Group Capacity,	Control Delay	, and LOS De	etermina	tion					1				
		EB		WB			NB			SB			
Lane group	L	Т		Т	R			L		R			
Adj. flow rate	164	176		362	696				344		101		
Lane group cap.	574	2009		1470	1210				521		466		
v/c ratio	0.29	0.09		0.25	0.58				0.66		0.22		
Green ratio	0.58	0.58		0.43	0.79				0.30		0.30		
Unif. delay d1	6.9	6.4		12.9	2.9				21.3		18.3		
Delay factor k	0.50	0.50		0.50	0.50				0.50		0.50		
Increm. delay d2	1.2	0.1		0.4	2.0				6.4		1.1		
PF factor	1.000	1.000		1.000	1.000				1.000		1.000		
Control delay	8.2	6.5		13.3	4.9				27.8		19.3		
Lane group LOS	A	A		В	A				С		В		
Apprch. delay	7	7.3		7.8						25.9			
Approach LOS		A		Α						С			
Intersec. delay	1.	2.1			Intersect	ion LOS				В			

SUPPLEMENTAL UNIFORM DELAY WORKSHEET FOR LEFT TURNS FROM EXCLUSIVE LANES WITH PROTECTED AND PERMITTED PHASES

General Information

Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

v/c Ratio Computation

			EB	۱ N	VB	NB	SB				
Cycle length, C (s)					70	.3					
Prot. phase eff. green intvl,	g (s)		7.0								
Opposed queue eff. green	intvl, ga	(s)	4.76								
Unopposed green intvl, gu	(s)		29.24								
Red time, r(s)			29.3								
Arrival rate, qa (veh/s)			0.05								
Prot. phase departure rate,	s _p (veł	n/s)	0.478								
Perm. phase departure rate	e, ss (ve	eh/s)	0.27								
Xperm			0.20								
Xprot (N/A for lagging left-tu	urns)		0.49								
Uniform Queue Size and	Delay (Computations									
Queue at start of green arro	ow, Qa		1.33								
Queue at start of unsaturat	ed gree	n, Qu	0.22								
Residual queue, Qr			0.00								
Uniform delay, d1			6.9								
Uniform Queue Size and	Delay E	quations			-						
	Case	Qa	Qu	Qr		d1					
If Xperm <= 1.0 & Xprot <= 1.0	1	qar	q a g q	0	[0.5/(qaC)]	$[rQ_{a} + Q_{a^{2/(}}s_{p}, q_{s)} + g_{q}C_{s}]$	$Q_{u} + Q_{u^{2/3}} S_{s-} q_{a)}$				
If Xperm <= 1.0 & Xprot > 1.0	2	q _a r	Qr + Qagq	Qa - g(Sp - qa)	a) $\begin{bmatrix} 0.5/(q_a C) \end{bmatrix} [rQ_a + g(Q_a + Q_r) + g_q (Q_r + Q_u) + Q_u^{2/(q_a)} \end{bmatrix}$						
If Xperm > 1.0 & Xprot <= 1.0	3	Qr + qar	Qagq	Qu - gu(Ss - qa	$(q_a) \begin{vmatrix} 0.5/(q_aC) \end{bmatrix} [g_qQ_u + g_u(Q_a + Q_r) + r(Q_r + Q_a) + Q_a^{2/(q_a)} \end{vmatrix}$						
If X _{perm} <= 1.0 (lagging lefts)	4	0	$q_a(r + g_q)$	0	$[0.5/(q_aC)][r + g_q)Q_u + Q_{u^{2/(S_s-Q_a)}}$						
If Xperm > 1.0 (lagging lefts)	5	Qu - gu(ss - qa)	$q_a(r + g_q)$	0	$[0.5/(q_a C)][r + g_q)Q_u + g_u(Q_u + Q_a) + Q_a^{2/}S_{p} \cdot q_a)$						

BACK-OF-QUEUE WORKSHEET

General Information

Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

Average Back of Queue												
		EB		<u> </u>	WB		<u></u>	NB			SB	
	LT	TH	RT	LT	ТН	RT	LT	ТН	RT	LT	TH	RT
Lane group	L	Т			Т	R				L		R
Init. queue/lane	0.0	0.0			0.0	0.0				0.0		0.0
Flow rate/lane	164	176			362	696				344		101
Satflow per lane	985	1809			1809	1538				1719		1538
Capacity/lane	574	2009			1470	1210				521		466
Flow ratio	0.17	0.05			0.11	0.45				0.20		0.07
v/c ratio	0.29	0.09			0.25	0.58				0.66		0.22
I factor	1.000	1.000			1.000	1.000				1.000	1.000	1.000
Arrival type	3	3			3	3				3		3
Platoon ratio	1.00	1.00			1.00	1.00				1.00		1.00
PF factor	1.00	1.00			1.00	1.00				1.00		1.00
Q1	1.4	0.8			2.4	5.3				5.9		1.5
kв	0.7	1.0			0.8	1.1				0.6		0.6
Q2	0.3	0.1			0.3	1.5				1.1		0.2
Q avg.	1.6	0.9			2.6	6.8				7.0		1.6
Percentile Back of Queue (95th p	ercentil	e)		J]	,				J	1	J
fB%	2.3	2.4			2.2	1.9				1.8		2.3
BOQ, Q%	3.8	2.2			5.8	12.6				12.9		3.8
Queue Storage Ratio												
Q spacing	25.0	25.0			25.0	25.0				25.0		25.0
Q storage	0	0			0	0				0		0
Avg. Rq												
95% Rq%						ĺ					ĺ	
HCS2000 TM	Co	pyright © 20)00 Univer	sity of Flo	rida All Ria	the Reserve	d d					Version 4.11

 $HCS2000^{\text{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

Version 4.1f

VOLUME ADJUSTMENT AND SATURATION FLOW RATE WORKSHEET

General Information

Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

Volume Adjustment												
		EB			WB			NB			SB	
	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT
Volume	182	200			187	253				307		140
PHF	0.84	0.84			0.92	0.92				0.75		0.75
Adj. Flow Rate	217	238			203	275				409		187
Lane Group	L	<i>т</i>			T	R				L		R
Adj. flow rate	217	238			203	275				409		187
Prop. LT or RT	0.000		0.000	0.000		0.000						
Saturation Flow Rate		1.	1.	1	1.	1	1.	1	I	1.	1	1.
Base satflow	1900	1900			1900	1900				1900		1900
Num. of lanes	1	2	0	0	2	1	0	0	0	1	0	1
fW	1.000	1.000			1.000	1.000				1.000		1.000
fHV	0.952	0.952			0.952	0.952				0.952		0.952
fg	1.000	1.000			1.000	1.000				1.000		1.000
fp	1.000	1.000			1.000	1.000				1.000		1.000
fbb	1.000	1.000			1.000	1.000				1.000		1.000
fa	1.000	1.000			1.000	1.000				1.000		1.000
fLU	1.000	0.952			0.952	1.000				1.000		1.000
fLT	0.950	1.000			1.000					0.950		
Secondary fLT	0.496											
fRT		1.000			1.000	0.850						0.850
fLpb	1.000	1.000			1.000					1.000		
fRpb		1.000			1.000	1.000						1.000
Adj. satflow	1719	3445			3445	1538				1719		1538
Sec. adj. satflow	898											

CAPACITY AND LOS WORKSHEET

General Information

Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

Capacity Analysis											
		EB		WB			NB			SB	
Lane group	L	T		Т	R				L		R
Adj. flow rate	217	238		203	275				409	<u> </u>	187
Satflow rate	1719	3445		3445	1538	<u> </u>			1719	ļ	1538
Lost time	2.0	2.0		2.0	2.0				2.0	ļ	2.0
Green ratio	0.48	0.48		0.19	0.64				0.39		0.39
Lane group cap.	626	1663		644	987				675	ļ	604
v/c ratio	0.35	0.14		0.32	0.28				0.61		0.31
Flow ratio		0.07		0.06	0.18				0.24		0.12
Crit. lane group											Ν
Sum flow ratios					0.4	12					
Lost time/cycle		12.00									
Critical v/c ratio					0.5	52					
Lane Group Capacity,	Control Delay	, and LOS De	termina	tion		-			1		
		EB		WB			NB		ļ	SB	
Lane group	L	<u> </u>		Т	R		R				
Adj. flow rate	217	238		203	275				409		187
Lane group cap.	626	1663		644	987				675		604
v/c ratio	0.35	0.14		0.32	0.28				0.61		0.31
Green ratio	0.48	0.48		0.19	0.64				0.39		0.39
Unif. delay d1	9.9	9.2		22.6	5.0				15.5		13.5
Delay factor k	0.50	0.50		0.50	0.50				0.50		0.50
Increm. delay d2	1.5	0.2		1.3	0.7				4.0		1.3
PF factor	1.000	1.000		1.000	1.000				1.000		1.000
Control delay	11.4	9.4		23.8	5.7				19.6		14.8
Lane group LOS	В	A		С	A				В		В
Apprch. delay	1	0.4		13.4						18.1	
Approach LOS		В		В						В	
Intersec. delay	1	4.3			Intersect	ion LOS				В	

SUPPLEMENTAL UNIFORM DELAY WORKSHEET FOR LEFT TURNS FROM EXCLUSIVE LANES WITH PROTECTED AND PERMITTED PHASES

General Information

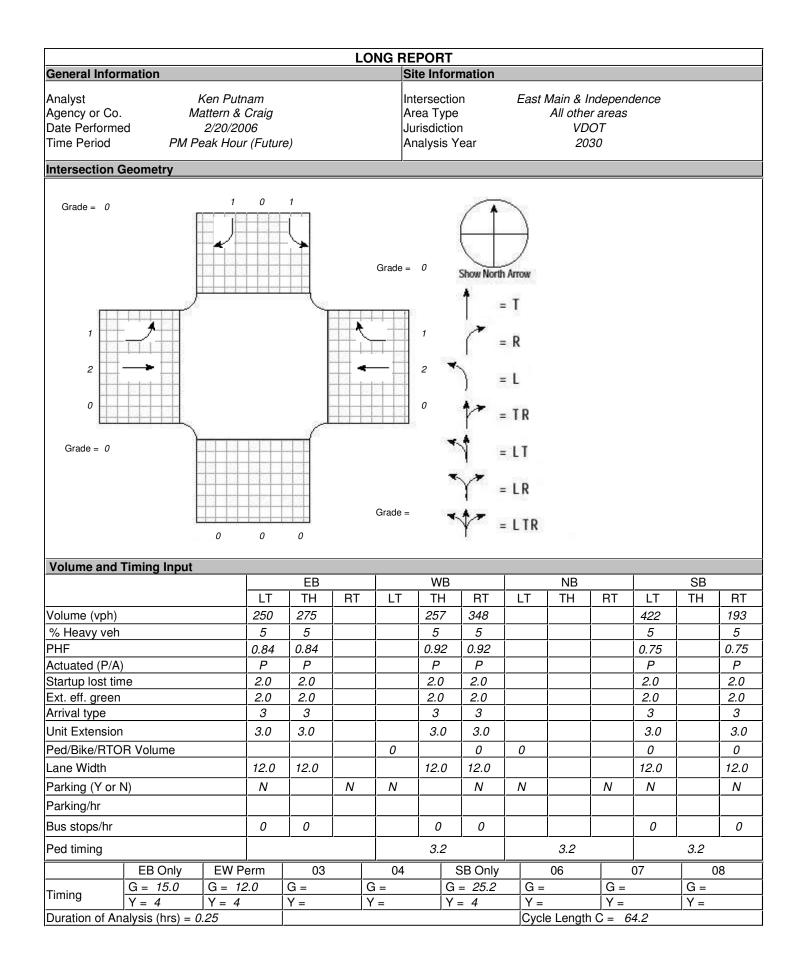
Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

v/c Ratio Computation

			EB		WE	3	NB		SB			
Cycle length, C (s)						64.	2					
Prot. phase eff. green intvl,	g (s)		15.0									
Opposed queue eff. green	intvl, go	(s)	3.29			ĺ						
Unopposed green intvl, gu	(s)		12.71									
Red time, r(s)			33.2			Í						
Arrival rate, qa (veh/s)			0.06			ĺ						
Prot. phase departure rate,	s _p (veł	n/s)	0.478									
Perm. phase departure rate	e, ss (ve	eh/s)	0.31									
Xperm			0.24									
Xprot (N/A for lagging left-tu	urns)		0.41									
Uniform Queue Size and	Delay (Computations		I				,				
Queue at start of green arro	ow, Qa		2.00					[
Queue at start of unsaturat	ed gree	n, Qu	0.20									
Residual queue, Qr			0.00					Í				
Uniform delay, d1			9.9			Í						
Uniform Queue Size and	Delay E	Equations										
	Case	Qa	Qu	Qr			dı					
If Xperm <= 1.0 & Xprot <= 1.0	1	q _a r	q a g q	0		[0.5/(qaC)][$rQ_a + Q_{a^{2/(}}S_{p_a}C_{p_a}$	l _{s) +} gqQı	$J_{+} Q_{u^{2/(}} s_{s_{-}} q_{a)}$			
If Xperm <= 1.0 & Xprot > 1.0	2	q _a r	Qr + qagq	Qa - g(Sp -	qa)	a) $\begin{bmatrix} 0.5/(q_a C) \end{bmatrix} [rQ_a + g(Q_a + Q_r) + g_q (Q_r + Q_u) + Q_u^{2/r} \\ q_a \end{bmatrix}$						
If Xperm > 1.0 & Xprot <= 1.0	3	Qr + qar	Qagq	Qu - gu(Ss	$-q_{a}) \begin{bmatrix} 0.5/(q_{a}C) \end{bmatrix} [g_{q}Q_{u} + g_{u}(Q_{a} + Q_{r}) + r(Q_{r} + Q_{a}) + Q_{a^{2/2}} \\ q_{a} \end{bmatrix}$				$Q_r + Q_a + Q_{a^{2/(S_p}}$			
If X _{perm} <= 1.0 (lagging lefts)	4	0	qa(r + gq)	0	$[0.5/(q_a C)][r + g_q)Q_u + Q_u^{2/(S_s - q_a)}$							
If Xperm > 1.0 (lagging lefts)	5	Qu - gu(ss - qa)	$q_a(r + g_q)$	0		[0.5/(qaC)][$[0.5/(q_aC)][r + g_q)Q_u + g_u(Q_u + Q_a) + Q_a^{2/(S_{p-}}Q_a)$					

BACK-OF-QUEUE WORKSHEET

General Information


Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

Average Back of Queue												
		EB		WB		NB		SB				
	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT	LT	TH	RT
Lane group	L	Т	<u> </u>		Т	R				L		R
Init. queue/lane	0.0	0.0			0.0	0.0				0.0		0.0
Flow rate/lane	217	238			203	275				409		187
Satflow per lane	1295	1809		[1809	1538				1719		1538
Capacity/lane	626	1663			644	987				675		604
Flow ratio	0.17	0.07			0.06	0.18				0.24		0.12
v/c ratio	0.35	0.14			0.32	0.28				0.61		0.31
I factor	1.000	1.000			1.000	1.000				1.000	1.000	1.000
Arrival type	3	3			3	3				3		3
Platoon ratio	1.00	1.00			1.00	1.00				1.00		1.00
PF factor	1.00	1.00			1.00	1.00				1.00		1.00
Q1	2.2	1.2			1.6	2.1				5.8		2.3
kв	0.6	0.8			0.4	0.9				0.7		0.6
Q2	0.3	0.1			0.2	0.3				1.0		0.3
Q avg.	2.5	1.4			1.8	2.5				6.8		2.6
Percentile Back of Queue (95th p	ercenti	le)	J	J	J	J	J	J		J	<u> </u>	
fB%	2.2	2.4			2.3	2.2	1	1		1.9		2.2
BOQ, Q%	5.6	3.2			4.2	5.5				12.7		5.7
Queue Storage Ratio					,							
Q spacing	25.0	25.0			25.0	25.0				25.0		25.0
Q storage	0	0			0	0				0		0
Avg. Rq												
95% Rq%												
HCS2000TM	Co	nvright © 20	000 Univer	sity of Flo	rida All Ri	ahts Reserve	-d				•	Version 4.1

 $HCS2000^{\text{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

Version 4.1f

General Information

Volume Adjustment	1			1			1			1		
		EB		ļ	WB		ļ	NB		ļ	SB	
	LT	ТН	RT	LT	ТН	RT	LT	TH	RT	LT	ТН	RT
Volume	250	275			257	348	<u></u>			422		193
PHF	0.84	0.84			0.92	0.92				0.75		0.75
Adj. Flow Rate	298	327			279	378				563		257
Lane Group	L	Т			Т	R				L		R
Adj. flow rate	298	327			279	378				563		257
Prop. LT or RT	0.000		0.000	0.000		0.000						
Saturation Flow Rate		1.		4	4	-	·		1	·	1	1
Base satflow	1900	1900			1900	1900				1900		1900
Num. of lanes	1	2	0	0	2	1	0	0	0	1	0	1
fW	1.000	1.000			1.000	1.000				1.000		1.000
fHV	0.952	0.952			0.952	0.952				0.952		0.952
fg	1.000	1.000			1.000	1.000				1.000		1.000
fp	1.000	1.000			1.000	1.000				1.000		1.000
fbb	1.000	1.000			1.000	1.000				1.000		1.000
fa	1.000	1.000			1.000	1.000				1.000		1.000
fLU	1.000	0.952			0.952	1.000				1.000		1.000
fLT	0.950	1.000			1.000					0.950		
Secondary fLT	0.413											
fRT		1.000			1.000	0.850						0.850
fLpb	1.000	1.000			1.000					1.000		
fRpb		1.000			1.000	1.000						1.000
Adj. satflow	1719	3445			3445	1538				1719		1538
Sec. adj. satflow	747			1	1						1	

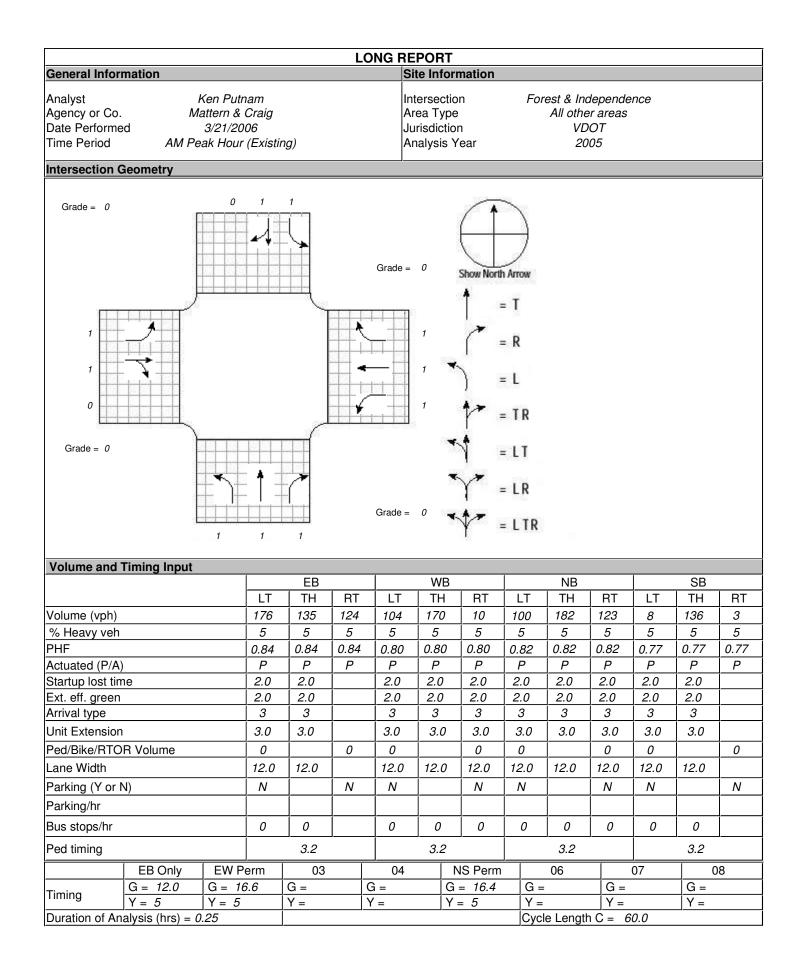
General Information

Capacity Analysis											
		EB		WB			NB			SB	
Lane group	L	T		Т	R				L		R
Adj. flow rate	298	327		279	378				563	<u> </u>	257
Satflow rate	1719	3445		3445	1538	<u> </u>			1719		1538
Lost time	2.0	2.0		2.0	2.0				2.0		2.0
Green ratio	0.48	0.48		0.19	0.64	<u></u>			0.39		0.39
Lane group cap.	588	1663		644	987	ļ			675		604
v/c ratio	0.51	0.20		0.43	0.38	<u> </u>			0.83		0.43
Flow ratio		0.09		0.08	0.25				0.33		0.17
Crit. lane group	N	N		Y	N		Ν		Y	N	Ν
Sum flow ratios					0.5	58					
Lost time/cycle					12.0	00					
Critical v/c ratio					0.7	72					
Lane Group Capacity,	Control Delay	, and LOS D	etermina	tion		1					
		EB		WB		ļ	NB		ļ	SB	
Lane group	L	Т		Т	R				L		R
Adj. flow rate	298	327		279	378				563		257
Lane group cap.	588	1663		644	987				675		604
v/c ratio	0.51	0.20		0.43	0.38				0.83		0.43
Green ratio	0.48	0.48		0.19	0.64				0.39		0.39
Unif. delay d1	10.6	9.5		23.1	5.5				17.6		14.2
Delay factor k	0.50	0.50		0.50	0.50				0.50		0.50
Increm. delay d2	3.1	0.3		2.1	1.1				11.6		2.2
PF factor	1.000	1.000		1.000	1.000				1.000		1.000
Control delay	13.7	9.7		25.2	6.6				29.2		16.4
Lane group LOS	В	A		С	A				С		В
Apprch. delay	1	1.6		14.5						25.2	
Approach LOS		В		В						С	
Intersec. delay	1	17.8 Intersection LOS							В		

General Information

Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

			EB	W	′В 🛛	NB	SB	
Cycle length, C (s)					64.	2		
Prot. phase eff. green intvl,	g (s)		15.0					
Opposed queue eff. green	intvl, go	(s)	4.63					
Unopposed green intvl, gu	(s)		11.37					
Red time, r(s)			33.2					
Arrival rate, qa (veh/s)			0.08					
Prot. phase departure rate,	s _p (ver	n/s)	0.478					
Perm. phase departure rate	e, ss (ve	eh/s)	0.29					
Xperm			0.40					
Xprot (N/A for lagging left-to	urns)		0.56					
Uniform Queue Size and	Delay (Computations]	
Queue at start of green arr	ow, Qa		2.75					
Queue at start of unsaturat	ed gree	n, Qu	0.38					
Residual queue, Qr			0.00					
Uniform delay, d1			10.6					
Uniform Queue Size and	Delay E	Equations						
	Case	Qa	Qu	Qr		dı		
If Xperm <= 1.0 & Xprot <= 1.0	1	qar	Qagq	0	[0.5/(qaC)][$rQ_a + Q_{a^{2/(}}S_{p}q_{s)} + g_q G$	$Q_{u + Q_{u^{2/3}}} S_{s -} q_{a)}$	
If Xperm <= 1.0 & Xprot > 1.0	2	q _a r	Qr + qagq	Qa - g(Sp - qa)	[0.5/(qaC)][q _{a)}	rQa + g(Qa + Qr) + gq	$(Qr + Qu) + Qu^{2/(S_s)}$	
If Xperm > 1.0 & Xprot <= 1.0	3	Qr + qar	QaQq	Qu - gu(Ss - qa)	a) $\left[[0.5/(q_a C)] [g_q Q_u + g_u (Q_a + Q_r) + r(Q_r + Q_a) + Q_a^{2/(S_a)} \right]$		$r(Q_{r} + Q_{a}) + Q_{a^{2/(}}S_{p}$	
If X _{perm} <= 1.0 (lagging lefts)	= 1.0 (lagging 4 0			0	$[0.5/(q_aC)][r + g_q)Q_u + Q_u^{2/(S_s-}Q_a)$			
If Xperm > 1.0 (lagging lefts)	5	Qu - gu(ss - qa)	$q_a(r + g_q)$	0	$[0.5/(q_a C)][r + g_q)Q_u + g_u(Q_u + Q_a) + Q_a^{2/(S_{p}} q_a)$			


General Information

Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

Average Back of Queue												
		EB			WB			NB			SB	
	LT	<u> TH</u>	RT	LT	TH	RT	LT	ТН	RT		TH	RT
Lane group	L	Т		<u></u>	<u>Т</u>	R				L		R
Init. queue/lane	0.0	0.0			0.0	0.0				0.0		0.0
Flow rate/lane	298	327			279	378				563		257
Satflow per lane	1217	1809			1809	1538				1719		1538
Capacity/lane	588	1663			644	987				675		604
Flow ratio	0.24	0.09			0.08	0.25			ĺ	0.33		0.17
v/c ratio	0.51	0.20			0.43	0.38				0.83		0.43
I factor	1.000	1.000			1.000	1.000			ĺ	1.000	1.000	1.000
Arrival type	3	3			3	3			ĺ	3		3
Platoon ratio	1.00	1.00			1.00	1.00				1.00		1.00
PF factor	1.00	1.00			1.00	1.00			ĺ	1.00		1.00
Q1	3.1	1.7			2.3	3.2				9.1		3.3
kв	0.6	0.8			0.4	0.9			ĺ	0.7		0.6
Q2	0.6	0.2			0.3	0.6				2.9		0.5
Q avg.	3.7	1.9			2.6	3.8				11.9		3.8
Percentile Back of Queue (95th p	ercenti	le)		,	,		1	·	1	1	4	
fB%	2.1	2.3			2.2	2.1			[1.7		2.1
BOQ, Q%	7.8	4.4			5.7	7.8				20.2		7.9
Queue Storage Ratio				1					,			
Q spacing	25.0	25.0			25.0	25.0				25.0		25.0
Q storage	0	0			0	0				0		0
Avg. Rq												
95% Rq%												
HCS2000TM		pyright © 20	000 Univer	sity of Flo	rida All Ri	ohts Reserve	-d		•	•	•	Version 4.1

 $HCS2000^{\text{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

General Information

Volume Adjustment	1									4		
		EB			WB			NB			SB	
	LT	ТН	RT									
Volume	176	135	124	104	170	10	100	182	123	8	136	3
PHF	0.84	0.84	0.84	0.80	0.80	0.80	0.82	0.82	0.82	0.77	0.77	0.77
Adj. Flow Rate	210	161	148	130	212	12	122	222	150	10	177	4
Lane Group	L	TR		L	Т	R	L	Т	R	L	TR	
Adj. flow rate	210	309		130	212	12	122	222	150	10	181	
Prop. LT or RT	0.000		0.479	0.000		0.000	0.000		0.000	0.000		0.022
Saturation Flow Rate		1	1	4	4		-	1	4	1	1	4
Base satflow	1900	1900		1900	1900	1900	1900	1900	1900	1900	1900	
Num. of lanes	1	1	0	1	1	1	1	1	1	1	1	0
fW	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fHV	0.952	0.952		0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	
fg	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fp	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fbb	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fa	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fLU	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fLT	0.950	1.000		0.572	1.000		0.643	1.000		0.577	1.000	
Secondary fLT												
fRT		0.928			1.000	0.850		1.000	0.850		0.997	
fLpb	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
fRpb		1.000			1.000	1.000		1.000	1.000		1.000	
Adj. satflow	1719	1680		1036	1810	1538	1164	1810	1538	1044	1804	
Sec. adj. satflow								ĺ			ĺ	

General Information

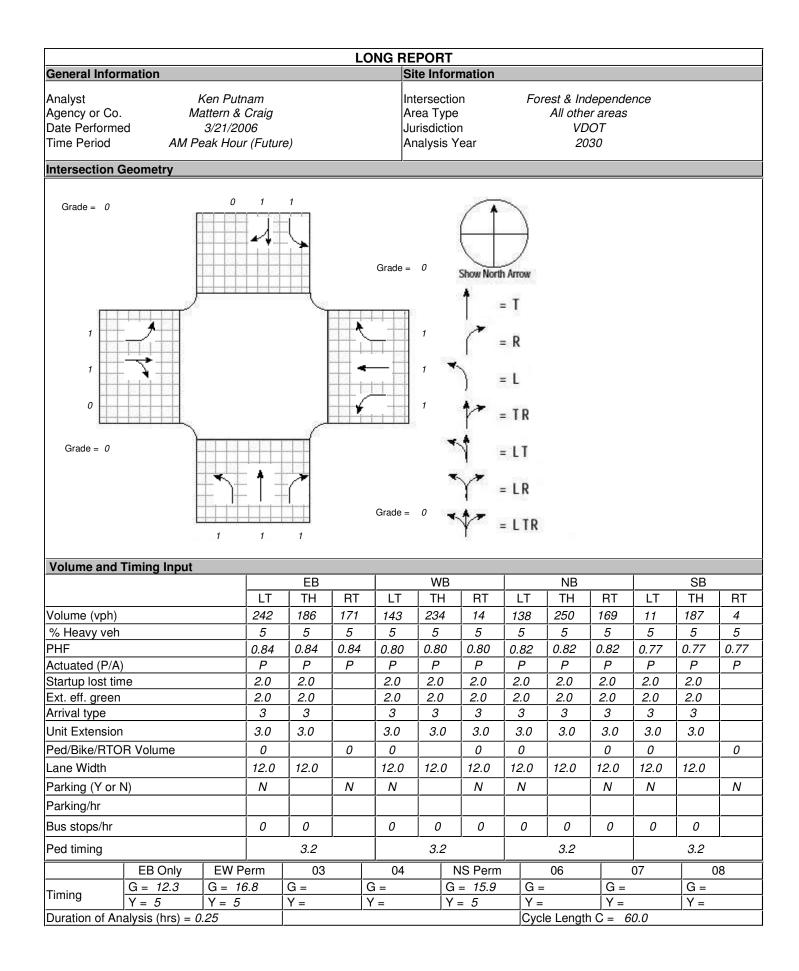
Capacity Analysis												
		EB			WB			NB			SB	
Lane group	L	TR		L	Т	R	L	Т	R	L	TR	
Adj. flow rate	210	309		130	212	12	122	222	150	10	181	<u> </u>
Satflow rate	1719	1680		1036	1810	1538	1164	1810	1538	1044	1804	<u> </u>
Lost time	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	<u></u>
Green ratio	0.20	0.56		0.28	0.28	0.28	0.27	0.27	0.27	0.27	0.27	
Lane group cap.	344	941		287	501	426	318	495	420	285	493	<u></u>
v/c ratio	0.61	0.33		0.45	0.42	0.03	0.38	0.45	0.36	0.04	0.37	
Flow ratio	0.12	0.18		0.13	0.12	0.01	0.10	0.12	0.10	0.01	0.10	<u></u>
Crit. lane group	Y									Ν	Ν	
Sum flow ratios		0.37										
Lost time/cycle						15	.00					
Critical v/c ratio		0.49										
Lane Group Capacity, Contr	ol Delay, and LOS Determination											
		EB			WB			NB			SB	
Lane group	L	TR		L	Т	R	L	Т	R	L	TR	
Adj. flow rate	210	309		130	212	12	122	222	150	10	181	
Lane group cap.	344	941		287	501	426	318	495	420	285	493	
v/c ratio	0.61	0.33		0.45	0.42	0.03	0.38	0.45	0.36	0.04	0.37	
Green ratio	0.20	0.56		0.28	0.28	0.28	0.27	0.27	0.27	0.27	0.27	
Unif. delay d1	21.9	7.1		17.9	17.8	15.8	17.7	18.1	17.6	16.0	17.6	
Delay factor k	0.50	0.50		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Increm. delay d2	7.8	0.9		5.1	2.6	0.1	3.5	2.9	2.4	0.2	2.1	
PF factor	1.000	1.000 1.000 1.000 1.000 1.000 1.000						1.000	1.000	1.000	1.000	
Control delay	29.7	8.0		23.0	20.4	15.9	21.2	21.0	19.9	16.2	19.7	
Lane group LOS	С	A		С	С	В	С	С	В	В	В	
Apprch. delay	1	6.8		2	1.2		2	20.7			19.5	
Approach LOS		В			С			С			В	
Intersec. delay	19.4 Intersection LOS B											

General Information

Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

V/C Hallo Computation								
			EB	WE	3	NB	SB	
Cycle length, C (s)					60.	.0	-	
Prot. phase eff. green intvl,	g (s)							
Opposed queue eff. green	intvl, gq	(s)						
Unopposed green intvl, gu	(s)							
Red time, r(s)								
Arrival rate, qa (veh/s)								
Prot. phase departure rate,	s _p (ver	ı/s)						
Perm. phase departure rate	e, ss (ve	h/s)						
Xperm								
Xprot (N/A for lagging left-tu	urns)							
Uniform Queue Size and	Delay (Computations		J.			,	
Queue at start of green arro	ow, Qa							
Queue at start of unsaturat	ed gree	n, Qu						
Residual queue, Qr								
Uniform delay, d1								
Uniform Queue Size and	Delay E	quations						
	Case	Qa	Qu	Qr		dı		
If Xperm <= 1.0 & Xprot <= 1.0	1	qar	q a g q	0	[0.5/(qaC)][$[rQ_a + Q_a^{2/(s_p} q_s) + g_q C]$	$Q_{u + Q_{u^{2/3}}} = Q_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_$	
If Xperm <= 1.0 & Xprot > 1.0	2	qar	Qr + qagq	Qa - g(Sp - qa)	$\begin{array}{c} (q_a) & [0.5/(q_aC)][rQ_a + g(Q_a + Q_r) + g_q (Q_r + Q_u)] \\ q_{a)} & \end{array}$			
If Xperm > 1.0 & Xprot <= 1.0	3	Qr + qar	q a g q	Qu - gu(Ss - qa)	[0.5/(qaC)][q _{a)}	[gqQu + gu(Qa + Qr) + I	$r(Q_{r} + Q_{a}) + Q_{a^{2/(}}S_{p}$	
If X _{perm} <= 1.0 (lagging lefts)	4	0	qa(r + gq)	0	[0.5/(qaC)][$[r + gq)Qu + Qu^{2/(s_s} q_a)$		
If Xperm > 1.0 (lagging lefts)	5	Qu - gu(ss - qa)	$q_a(r + g_q)$	0	$[0.5/(q_aC)][r + g_q)Q_u + g_u(Q_u + Q_a) + Q_a^{2i(S_p - q_a)}$			

General Information


Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

Average	Back	of	Queue
riverage	Duon	•••	aaoao

Average Back of Queue	-											
		EB	1	<u> </u>	WB		ļ	NB	1	ļ	SB	. <u></u>
	LT	ТН	RT	LT	TH	RT		ТН	RT	LT	TH	RT
Lane group	L	TR		L	Т	R	L	<u>Т</u>	R	L	TR	
Init. queue/lane	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Flow rate/lane	210	309		130	212	12	122	222	150	10	181	
Satflow per lane	1719	1680		1036	1810	1538	1164	1810	1538	1044	1804	
Capacity/lane	344	941		287	501	426	318	495	420	285	493	
Flow ratio	0.12	0.18		0.13	0.12	0.01	0.10	0.12	0.10	0.01	0.10	
v/c ratio	0.61	0.33		0.45	0.42	0.03	0.38	0.45	0.36	0.04	0.37	
I factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Arrival type	3	3		3	3	3	3	3	3	3	3	
Platoon ratio	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PF factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Q1	3.2	2.8		1.8	2.9	0.1	1.7	3.1	2.0	0.1	2.4	
kв	0.4	0.8		0.4	0.5	0.5	0.4	0.5	0.5	0.4	0.5	
Q2	0.6	0.4		0.3	0.4	0.0	0.2	0.4	0.3	0.0	0.3	
Q avg.	3.8	3.2		2.1	3.3	0.2	1.9	3.5	2.3	0.1	2.7	
Percentile Back of Queue (95th p	ercenti	le)	,	J	,	J	J	J	,	J	J	1
fB%	2.1	2.1	[2.3	2.1	2.6	2.3	2.1	2.2	2.6	2.2	
BOQ, Q%	7.9	6.8		4.7	6.9	0.4	4.3	7.3	5.1	0.3	6.0	ĺ
Queue Storage Ratio		-		-							-	
Q spacing	25.0	25.0		25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	
Q storage	0	0		0	0	0	0	0	0	0	0	
Avg. Rq												
95% Rq%												
HCS2000TM	C	nvright © (2000 Univ	areity of Flo	vrida All P	ights Pasar	ved	,		•		Version 4.1

 $HCS2000^{\text{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

General Information

Volume Adjustment												
		EB			WB			NB			SB	
	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT	LT	TH	RT
Volume	242	186	171	143	234	14	138	250	169	11	187	4
PHF	0.84	0.84	0.84	0.80	0.80	0.80	0.82	0.82	0.82	0.77	0.77	0.77
Adj. Flow Rate	288	221	204	179	292	17	168	305	206	14	243	5
Lane Group	L	TR		L	Т	R	L	Т	R	L	TR	
Adj. flow rate	288	425		179	292	17	168	305	206	14	248	
Prop. LT or RT	0.000		0.480	0.000		0.000	0.000		0.000	0.000		0.020
Saturation Flow Rate		-	1.	1	4	1		4		4	-	
Base satflow	1900	1900		1900	1900	1900	1900	1900	1900	1900	1900	
Num. of lanes	1	1	0	1	1	1	1	1	1	1	1	0
fW	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fHV	0.952	0.952		0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	
fg	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fp	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fbb	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fa	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fLU	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fLT	0.950	1.000		0.515	1.000		0.527	1.000		0.430	1.000	
Secondary fLT												
fRT		0.928			1.000	0.850		1.000	0.850		0.997	
fLpb	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
fRpb		1.000			1.000	1.000		1.000	1.000		1.000	
Adj. satflow	1719	1679		931	1810	1538	954	1810	1538	778	1804	
Sec. adj. satflow		İ						1				

General Information

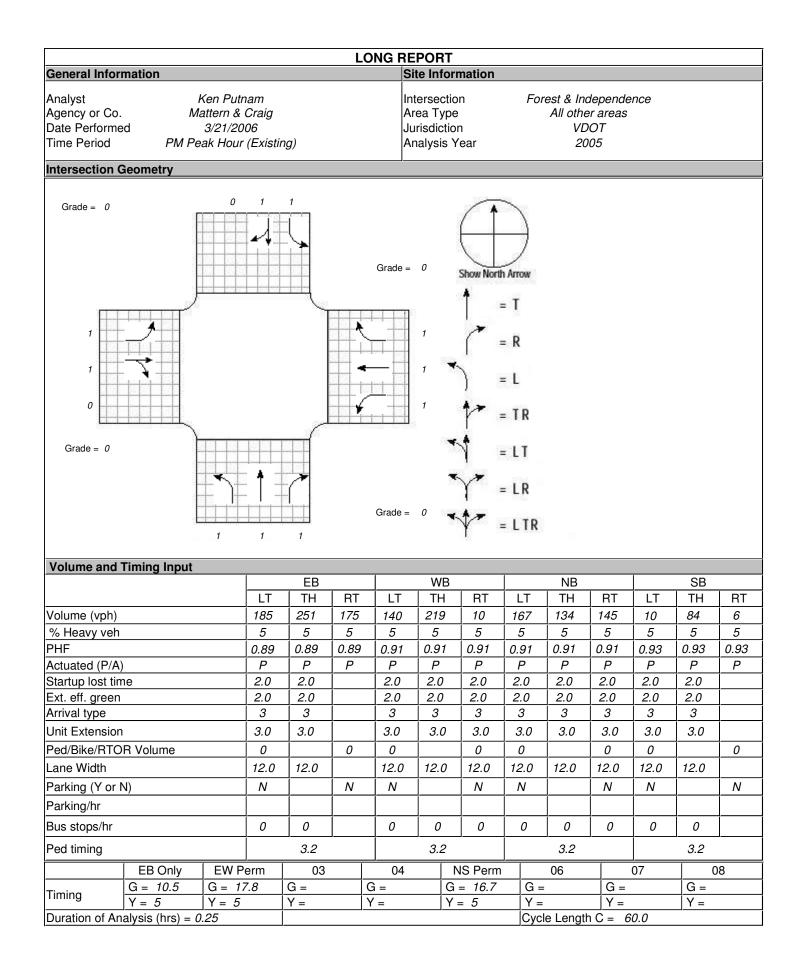
Capacity Analysis												
		EB			WB			NB			SB	
Lane group	L	TR		L	T	R	L	Т	R	L	TR	
Adj. flow rate	288	425		179	292	17	168	305	206	14	248	
Satflow rate	1719	1679		931	1810	1538	954	1810	1538	778	1804	
Lost time	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	ļ
Green ratio	0.20									0.26	0.26	
Lane group cap.	352	954		261	507	431	253	480	408	206	478	ļ
v/c ratio	0.82	0.45		0.69	0.58	0.04	0.66	0.64	0.50	0.07	0.52	ļ
Flow ratio	0.17	0.25		0.19	0.16	0.01	0.18	0.17	0.13	0.02	0.14	<u></u>
Crit. lane group	Y									Ν	Ν	
Sum flow ratios		0.54										
Lost time/cycle		15.00										
Critical v/c ratio		0.71										
Lane Group Capacity, Contr	ol Dela	y, and L	.OS D	etermin	ation		1			1		
		EB			WB			NB			SB	
Lane group	L	TR		L	Т	R	L	Т	R	L	TR	
Adj. flow rate	288	425		179	292	17	168	305	206	14	248	
Lane group cap.	352	954		261	507	431	253	480	408	206	478	
v/c ratio	0.82	0.45		0.69	0.58	0.04	0.66	0.64	0.50	0.07	0.52	
Green ratio	0.20	0.57		0.28	0.28	0.28	0.26	0.26	0.26	0.26	0.26	
Unif. delay d1	22.8	7.5		19.2	18.5	15.7	19.7	19.5	18.7	16.5	18.8	
Delay factor k	0.50	0.50		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Increm. delay d2	18.7	1.5		13.7	4.7	0.2	13.0	6.3	4.4	0.6	4.0	
PF factor	1.000 1.000 1.000 1.000 1.000 1.000 1.000							1.000	1.000	1.000		
Control delay	41.5	9.0		33.0	23.2	15.9	32.6	25.8	23.1	17.1	22.8	
Lane group LOS	D	A		С	С	В	С	С	С	В	С	
Apprch. delay	22	2.1		2	6.6		2	26.7			22.5	
Approach LOS		С			С			С			С	
Intersec. delay	24.6 Intersection LOS C											

General Information

Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

V/C Ratio Computation								
			EB	W	В	NB	SB	
Cycle length, C (s)					60	0.0		
Prot. phase eff. green intvl,	g (s)							
Opposed queue eff. green	intvl, ga	(S)						
Unopposed green intvl, gu	(s)							
Red time, r(s)								
Arrival rate, qa (veh/s)								
Prot. phase departure rate,	s _p (veł	ı/s)						
Perm. phase departure rate	ə, ss (ve	eh/s)						
Xperm								
Xprot (N/A for lagging left-to	urns)							
Uniform Queue Size and	Delay (Computations						
Queue at start of green arr	ow, Qa							
Queue at start of unsaturat	ed gree	en, Qu						
Residual queue, Qr								
Uniform delay, d1								
Uniform Queue Size and	Delay E	Equations						
	Case	Qa	Qu	Qr		dı		
If Xperm <= 1.0 & Xprot <= 1.0	1	qar	q a g q	0	[0.5/(qaC)]	$[rQ_a + Q_{a^{2/(}}s_{p}, q_{s)} + g_q Q_{s}]$	$u_{u} + Q_{u^{2/(s_{s}}} q_{a)}$	
If Xperm <= 1.0 & Xprot > 1.0	2	q _a r	Qr + Qagq	Qa - g(Sp - qa)	- qa) $ \begin{bmatrix} 0.5/(q_aC) \end{bmatrix} [rQ_a + g(Q_a + Q_r) + g_q (Q_r + Q_u) + Q_q (Q_r + Q_u) + Q_q (Q_r + Q_u) \end{bmatrix} $			
If Xperm > 1.0 & Xprot <= 1.0	3	Qr + qar	Qagq	Qu - gu(Ss - qa)	[0.5/(qaC)] q _{a)}	$[g_qQ_u + g_u(Q_a + Q_r) + I]$	$(Q_r + Q_a) + Q_{a^{2/(S_p)}}$	
If X _{perm} <= 1.0 (lagging lefts)	4	0	$q_a(r + g_q)$	0	[0.5/(qaC)]	$[r + g_q)Q_u + Q_u^{2/(s_s} q_a)$		
If X _{perm} > 1.0 (lagging lefts)	5	Qu - gu(ss - qa)	$q_a(r + g_q)$	0	$[0.5/(q_aC)][r + g_q)Q_u + g_u(Q_u + Q_a) + Q_a^{2/(S_{p}, q_a)}$			

General Information


Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

Average	Back of	Queue
---------	---------	-------

Average Back of Queue										-		
		EB	1	ļ	WB		<u> </u>	NB		<u> </u>	SB	
	LT	ТН	RT	LT	TH	RT		ТН	RT	LT	ТН	RT
Lane group	L	TR	<u> </u>	L	Т	R	L	Т	R	L	TR	
Init. queue/lane	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Flow rate/lane	288	425		179	292	17	168	305	206	14	248	
Satflow per lane	1719	1679		931	1810	1538	954	1810	1538	778	1804	
Capacity/lane	352	954		261	507	431	253	480	408	206	478	
Flow ratio	0.17	0.25		0.19	0.16	0.01	0.18	0.17	0.13	0.02	0.14	
v/c ratio	0.82	0.45		0.69	0.58	0.04	0.66	0.64	0.50	0.07	0.52	
I factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Arrival type	3	3		3	3	3	3	3	3	3	3	
Platoon ratio	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PF factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Q1	4.6	4.1		2.7	4.2	0.2	2.5	4.5	2.9	0.2	3.5	
kв	0.4	0.8		0.3	0.5	0.5	0.3	0.5	0.5	0.3	0.5	
Q2	1.6	0.7		0.7	0.7	0.0	0.6	0.9	0.5	0.0	0.5	
Q avg.	6.1	4.8		3.3	4.9	0.2	3.1	5.4	3.4	0.2	4.1	
Percentile Back of Queue (95th p	ercenti	ile)	,	4		,	4	1	,	4	4	1
fB%	1.9	2.0		2.1	2.0	2.6	2.1	1.9	2.1	2.6	2.0	
BOQ, Q%	11.6	9.4		7.1	9.7	0.6	6.6	10.4	7.1	0.5	8.3	
Queue Storage Ratio												
Q spacing	25.0	25.0		25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	
Q storage	0	0		0	0	0	0	0	0	0	0	
Avg. Rq												
95% Rq%												
HCS2000 TM	Co	opyright © 2	2000 Univ	ersity of Flo	orida, All R	ights Reser	ved		,	-	·	Version 4.1

 $HCS2000^{\text{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

General Information

Volume Adjustment	1						1					
		EB			WB			NB			SB	
	LT	ТН	RT									
Volume	185	251	175	140	219	10	167	134	145	10	84	6
PHF	0.89	0.89	0.89	0.91	0.91	0.91	0.91	0.91	0.91	0.93	0.93	0.93
Adj. Flow Rate	208	282	197	154	241	11	184	147	159	11	90	6
Lane Group	L	TR		L	Т	R	L	Т	R	L	TR	
Adj. flow rate	208	479		154	241	11	184	147	159	11	96	
Prop. LT or RT	0.000		0.411	0.000		0.000	0.000		0.000	0.000		0.063
Saturation Flow Rate			1									
Base satflow	1900	1900		1900	1900	1900	1900	1900	1900	1900	1900	
Num. of lanes	1	1	0	1	1	1	1	1	1	1	1	0
fW	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fHV	0.952	0.952		0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	
fg	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fp	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fbb	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fa	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fLU	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fLT	0.950	1.000		0.490	1.000		0.695	1.000		0.663	1.000	
Secondary fLT												
fRT		0.938			1.000	0.850		1.000	0.850		0.991	
fLpb	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
fRpb		1.000			1.000	1.000		1.000	1.000		1.000	
Adj. satflow	1719	1698		886	1810	1538	1257	1810	1538	1200	1793	
Sec. adj. satflow												

General Information

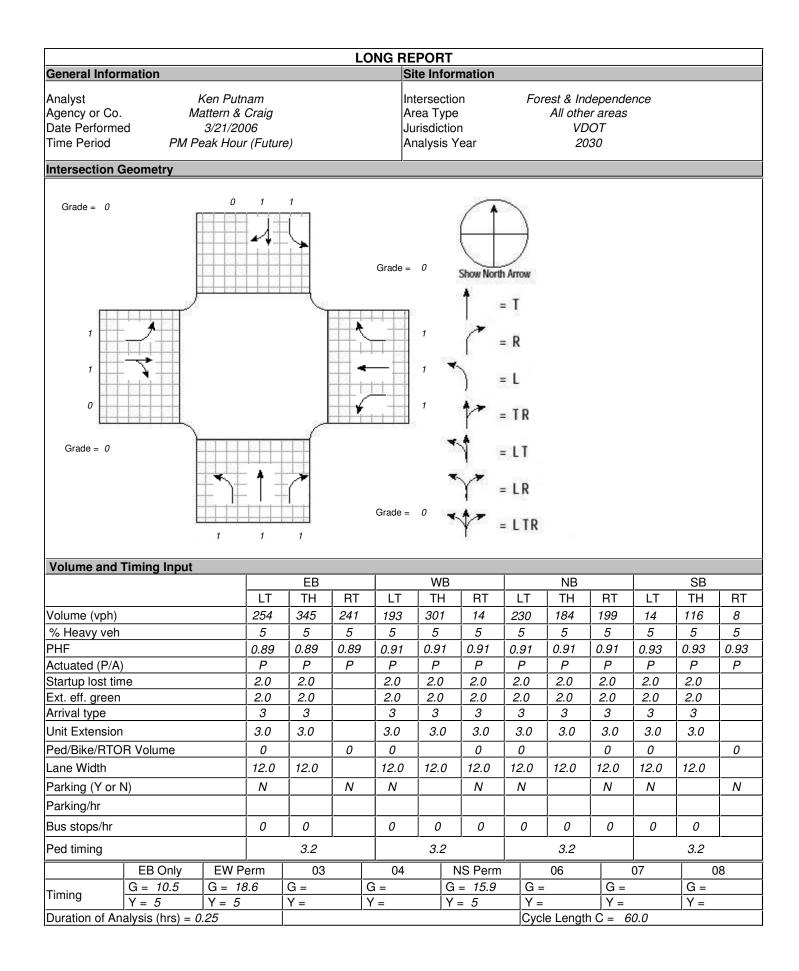
Capacity Analysis													
		EB			WB		NB			SB			
Lane group	L	TR		L	Т	R	L	Т	R	L	TR		
Adj. flow rate	208	479		154	241	11	184	147	159	11	96	<u> </u>	
Satflow rate	1719	1698		886	1810	1538	1257	1810	1538	1200	1793	<u> </u>	
Lost time	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	<u></u>	
Green ratio	0.17	0.56		0.30	0.30	0.30	0.28	0.28	0.28	0.28	0.28	<u> </u>	
Lane group cap.	301	942		263	537	456	350	504	428	334	499	<u></u>	
v/c ratio	0.69	0.51		0.59	0.45	0.02	0.53	0.29	0.37	0.03	0.19		
Flow ratio	0.12	0.28		0.17	0.13	0.01	0.15	0.08	0.10	0.01	0.05		
Crit. lane group	Y	N		Y	N	N	Y	Ν	N	Ν	Ν		
Sum flow ratios	·						44						
Lost time/cycle							.00						
Critical v/c ratio							59						
Lane Group Capacity, Contr	ol Dela	y, and L	OS D	etermir	ation		1						
	EB WB							NB			SB		
Lane group	L	TR		L	T	R	L	Т	R	L	TR		
Adj. flow rate	208	479		154	241	11	184	147	159	11	96		
Lane group cap.	301	942		263	537	456	350	504	428	334	499		
v/c ratio	0.69	0.51		0.59	0.45	0.02	0.53	0.29	0.37	0.03	0.19		
Green ratio	0.17	0.56		0.30	0.30	0.30	0.28	0.28	0.28	0.28	0.28		
Unif. delay d1	23.2	8.3		18.0	17.1	14.9	18.3	17.0	17.4	15.8	16.5		
Delay factor k	0.50	0.50		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50		
Increm. delay d2	12.3	2.0		9.2	2.7	0.1	5.6	1.5	2.5	0.2	0.9		
PF factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
Control delay	35.5	10.2		27.2	19.8	15.0	23.9	18.5	19.9	16.0	17.4		
Lane group LOS	D	В		С	В	В	С	В	В	В	В		
Apprch. delay	1	17.9			2.5		21.0			17.2			
Approach LOS		ВС			С			С		В			
Intersec. delay	1	19.8 Interse				Intersec	tion LOS			В			

General Information

Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

V/C Hallo Computation										
			EB	WE	3	NB	SB			
Cycle length, C (s)					60.	.0	-			
Prot. phase eff. green intvl,	g (s)									
Opposed queue eff. green	intvl, gq	(s)								
Unopposed green intvl, gu	(s)									
Red time, r(s)										
Arrival rate, qa (veh/s)										
Prot. phase departure rate,	s _p (ver	ı/s)								
Perm. phase departure rate	e, ss (ve	h/s)								
Xperm										
Xprot (N/A for lagging left-tu	urns)									
Uniform Queue Size and	Delay (Computations		J.			,			
Queue at start of green arro	ow, Qa									
Queue at start of unsaturat	ed gree	n, Qu								
Residual queue, Qr										
Uniform delay, d1										
Uniform Queue Size and	Delay E	quations								
	Case	Qa	Qu	Qr		dı				
If Xperm <= 1.0 & Xprot <= 1.0	1	qar	q a g q	0	[0.5/(qaC)][$[rQ_a + Q_a^{2/(s_p} q_s) + g_q C]$	$Q_{u + Q_{u^{2/3}}} = Q_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_$			
If Xperm <= 1.0 & Xprot > 1.0	2	qar	Qr + qagq	Qa - g(Sp - qa)	$\frac{[0.5/(q_aC)][rQ_a + g(Q_a + Q_r) + g_q (Q_r + Q_u) + Q_u^{2/(S_s)}}{q_{a}}$					
If Xperm > 1.0 & Xprot <= 1.0	3	Qr + qar	q a g q	Qu - gu(Ss - qa)	a) $[0.5/(q_aC)][g_qQ_u + g_u(Q_a + Q_r) + r(Q_r + Q_a) + Q_a^{2/(S_p)}]$					
If X _{perm} <= 1.0 (lagging lefts)	4	0	qa(r + gq)	0	$[0.5/(q_aC)][r + g_q)Q_u + Q_u^{2l(S_s - q_a)}$					
If Xperm > 1.0 (lagging lefts)	5	Qu - gu(ss - qa)	$q_a(r + g_q)$	0	$[0.5/(q_aC)][r + g_q)Q_u + g_u(Q_u + Q_a) + Q_a^{2/(S_p - Q_a)}$					

General Information


Project Description Independence Blvd Corridor Study - Existing (Comm # 2541)

	Average	Back	of	Queue
--	---------	------	----	-------

Average Back of Queue	-											
		EB	1	<u> </u>	WB	1	<u> </u>	NB	1	ļ	SB	
	LT	TH	RT	LT	TH	RT	LT	ТН	RT	LT	TH	RT
Lane group	L	TR		L	Т	R	L	T	R	L	TR	
Init. queue/lane	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Flow rate/lane	208	479		154	241	11	184	147	159	11	96	
Satflow per lane	1719	1698		886	1810	1538	1257	1810	1538	1200	1793	
Capacity/lane	301	942		263	537	456	350	504	428	334	499	
Flow ratio	0.12	0.28		0.17	0.13	0.01	0.15	0.08	0.10	0.01	0.05	
v/c ratio	0.69	0.51		0.59	0.45	0.02	0.53	0.29	0.37	0.03	0.19	
I factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Arrival type	3	3		3	3	3	3	3	3	3	3	
Platoon ratio	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PF factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Q1	3.3	4.9		2.2	3.3	0.1	2.6	1.9	2.1	0.1	1.2	
kв	0.4	0.8		0.3	0.6	0.5	0.4	0.5	0.5	0.4	0.5	
Q2	0.8	0.8		0.5	0.4	0.0	0.4	0.2	0.3	0.0	0.1	
Q avg.	4.0	5.8		2.6	3.7	0.1	3.0	2.1	2.4	0.1	1.3	
Percentile Back of Queue (95th p	ercenti	le)	,	,			1	1	,	1	4	
fB%	2.0	1.9		2.2	2.1	2.6	2.1	2.3	2.2	2.6	2.4	
BOQ, Q%	8.2	11.1		5.8	7.7	0.4	6.5	4.8	5.3	0.4	3.2	
Queue Storage Ratio											-	
Q spacing	25.0	25.0		25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	
Q storage	0	0		0	0	0	0	0	0	0	0	
Avg. Ro												
95% Rq%												
HC\$2000TM	C	onvright © (2000 Univ	ersity of Flo	vrida All R	ights Reserv	ved	,			, V	Version 4 1

 $HCS2000^{\text{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

General Information

Volume Adjustment												
		EB			WB			NB			SB	
	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT
Volume	254	345	241	193	301	14	230	184	199	14	116	8
PHF	0.89	0.89	0.89	0.91	0.91	0.91	0.91	0.91	0.91	0.93	0.93	0.93
Adj. Flow Rate	285	388	271	212	331	15	253	202	219	15	125	9
Lane Group	L	TR		L	Т	R	L	Т	R	L	TR	
Adj. flow rate	285	659		212	331	15	253	202	219	15	134	
Prop. LT or RT	0.000		0.411	0.000		0.000	0.000		0.000	0.000		0.067
Saturation Flow Rate			4				- I		- I -	1		
Base satflow	1900	1900		1900	1900	1900	1900	1900	1900	1900	1900	
Num. of lanes	1	1	0	1	1	1	1	1	1	1	1	0
fW	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fHV	0.952	0.952		0.952	0.952	0.952	0.952	0.952	0.952	0.952	0.952	
fg	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fp	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fbb	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fa	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fLU	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fLT	0.950	1.000		0.414	1.000		0.671	1.000		0.608	1.000	
Secondary fLT												
fRT		0.938			1.000	0.850		1.000	0.850		0.990	
fLpb	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
fRpb		1.000			1.000	1.000		1.000	1.000		1.000	
Adj. satflow	1719	1698		750	1810	1538	1215	1810	1538	1101	1791	
Sec. adj. satflow		İ										

General Information

Capacity Analysis													
		EB			WB			NB		SB			
Lane group	L	TR		L	T	R	L	Т	R	L	TR		
Adj. flow rate	285	659	<u> </u>	212	331	15	253	202	219	15	134		
Satflow rate	1719	1698	ļ	750	1810	1538	1215	1810	1538	1101	1791		
Lost time	2.0	2.0	ļ	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Green ratio	0.17	0.57	ļ	0.31	0.31	0.31	0.26	0.26	0.26	0.26	0.26		
Lane group cap.	301	965	ļ	233	561	477	322	480	408	292	475		
v/c ratio	0.95	0.68	ļ	0.91	0.59	0.03	0.79	0.42	0.54	0.05	0.28		
Flow ratio	0.17	0.39	ļ	0.28	0.18	0.01	0.21	0.11	0.14	0.01	0.07		
Crit. lane group	Y	N		Y	N	N	Y	Ν	N	Ν	Ν		
Sum flow ratios						0.	2.66						
Lost time/cycle						15	5.00						
Critical v/c ratio		0.8											
Lane Group Capacity, Cont	rol Dela	ol Delay, and LOS Determination								1			
		EB WB						NB			SB		
Lane group	L	TR		L	Т	R	L	Т	R	L	TR		
Adj. flow rate	285	659		212	331	15	253	202	219	15	134		
Lane group cap.	301	965		233	561	477	322	480	408	292	475		
v/c ratio	0.95	0.68		0.91	0.59	0.03	0.79	0.42	0.54	0.05	0.28		
Green ratio	0.17	0.57		0.31	0.31	0.31	0.26	0.26	0.26	0.26	0.26		
Unif. delay d1	24.5	9.1		19.9	17.5	14.4	20.5	18.2	18.9	16.4	17.5		
Delay factor k	0.50	0.50		0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50		
Increm. delay d2	39.9	3.9		39.5	4.5	0.1	17.4	2.7	5.0	0.3	1.5		
PF factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
Control delay	64.4	13.0		59.4	22.0	14.5	37.8	20.9	23.9	16.8	19.0		
Lane group LOS	E	В		E	C	В	D	С	С	В	В		
Apprch. delay	2	8.5		3	6.0		28.2				18.8		
Approach LOS		С	с D				С				В		
Intersec. delay	2	29.6 Inters					ntersection LOS				С		

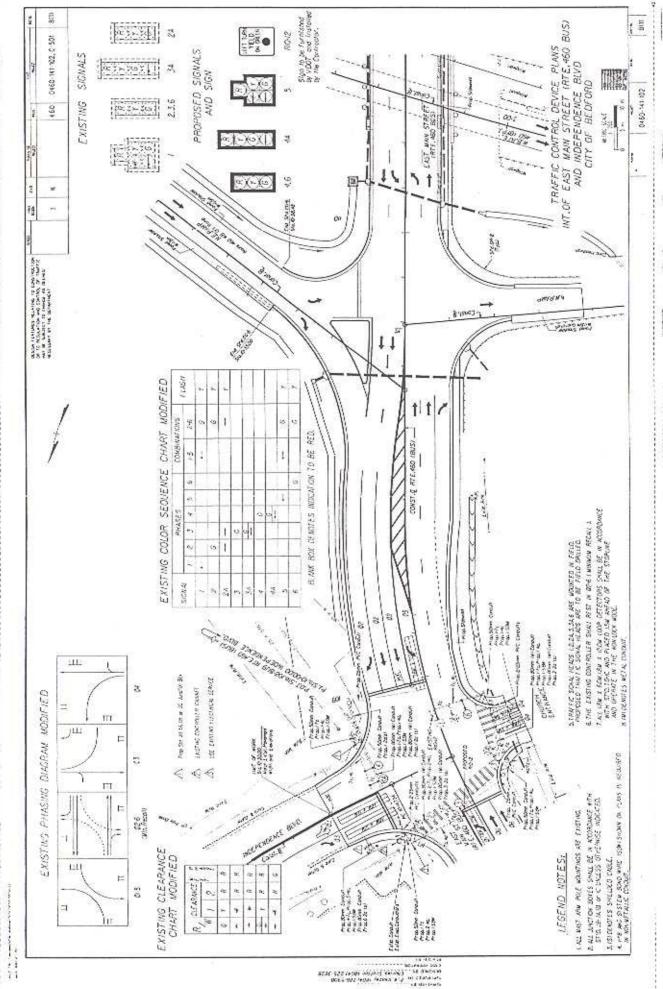
General Information

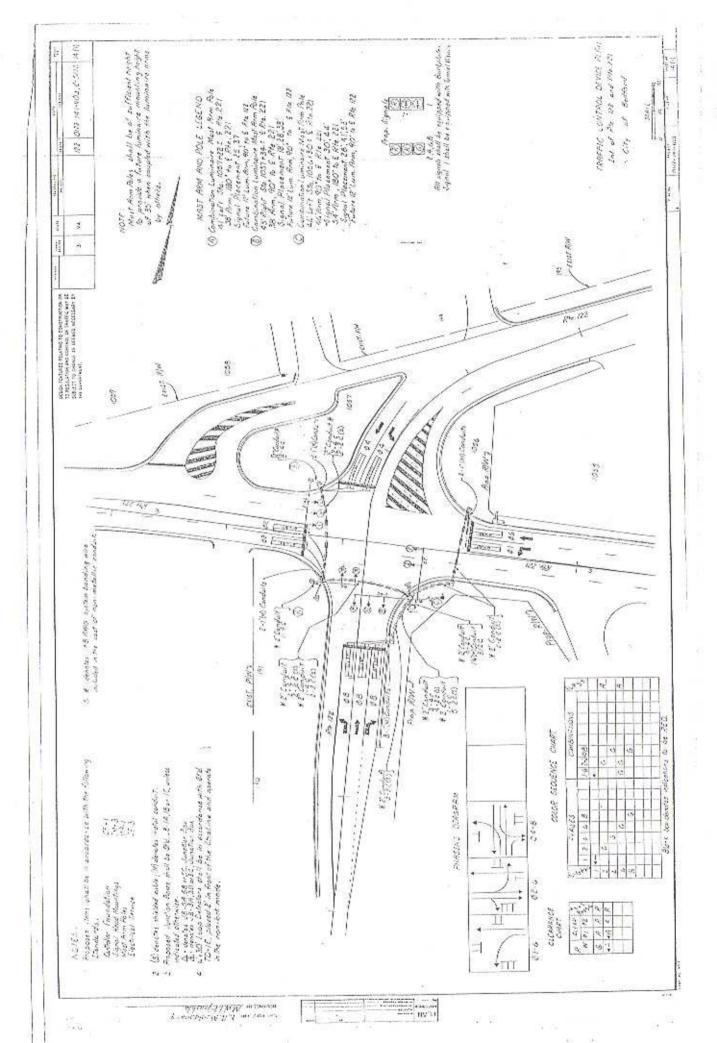
Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

V/C Ratio Computation										
			EB	W	В	NB	SB			
Cycle length, C (s)					60	0.0				
Prot. phase eff. green intvl,	g (s)									
Opposed queue eff. green	intvl, ga	(S)								
Unopposed green intvl, gu	(s)									
Red time, r(s)										
Arrival rate, qa (veh/s)										
Prot. phase departure rate,	s _p (veł	ı/s)								
Perm. phase departure rate	ə, ss (ve	eh/s)								
Xperm										
Xprot (N/A for lagging left-to	urns)									
Uniform Queue Size and	Delay (Computations								
Queue at start of green arr	ow, Qa									
Queue at start of unsaturat	ed gree	en, Qu								
Residual queue, Qr										
Uniform delay, d1										
Uniform Queue Size and	Delay E	Equations								
	Case	Qa	Qu	Qr		dı				
If Xperm <= 1.0 & Xprot <= 1.0	1	qar	q a g q	0	[0.5/(qaC)]	$[rQ_a + Q_{a^{2/(}}s_{p}, q_{s)} + g_q Q_{s}]$	$u_{u} + Q_{u^{2/(s_{s}}} q_{a)}$			
If Xperm <= 1.0 & Xprot > 1.0	2	q _a r	Qr + Qagq	Qa - g(Sp - qa)	$\int_{[0.5/(q_aC)][rQ_a + g(Q_a + Q_r) + g_q (Q_r + Q_u) + Q_u^{2/(S_s)}]} [0.5/(q_aC)][rQ_a + g(Q_a + Q_r) + g_q (Q_r + Q_u) + Q_u^{2/(S_s)}]$					
If Xperm > 1.0 & Xprot <= 1.0	3	Qr + qar	Qagq	Qu - gu(Ss - qa)	a) $[0.5/(q_aC)][g_qQ_u + g_u(Q_a + Q_r) + r(Q_r + Q_a) + Q_a^{2l/S_r}]$					
If X _{perm} <= 1.0 (lagging lefts)	4	0	$q_a(r + g_q)$	0	$[0.5/(q_aC)][r + g_q)Q_u + Q_u^{2/(S_s - q_a)}$					
If X _{perm} > 1.0 (lagging lefts)	5	Qu - gu(ss - qa)	$q_a(r + g_q)$	0	$[0.5/(q_a C)][r + g_q)Q_u + g_u(Q_u + Q_a) + Q_a^{2/(S_p - Q_a)}$					

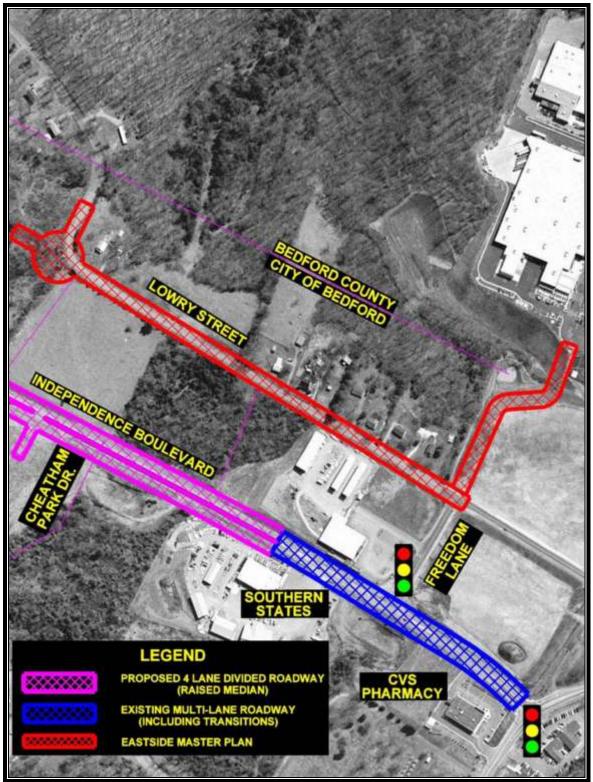
General Information

Project Description Independence Blvd Corridor Study - Future (Comm # 2541)

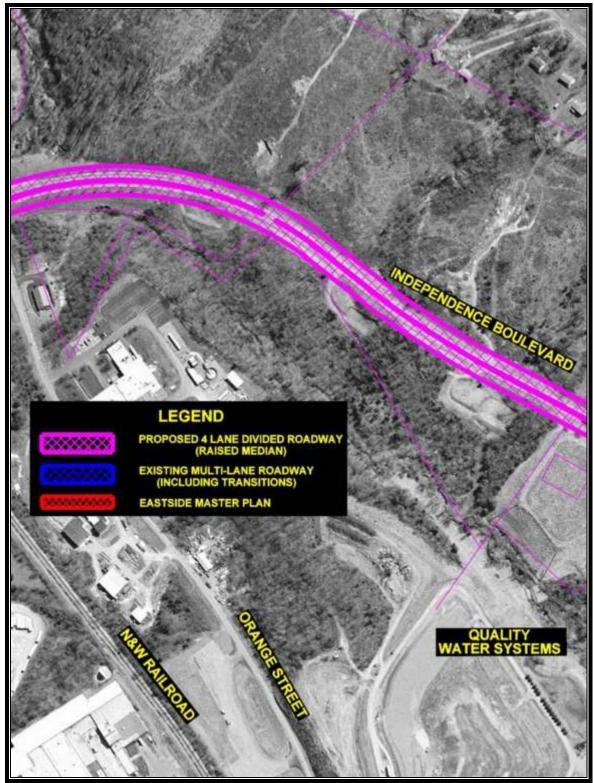

	Average	Back of	Queue
--	---------	---------	-------

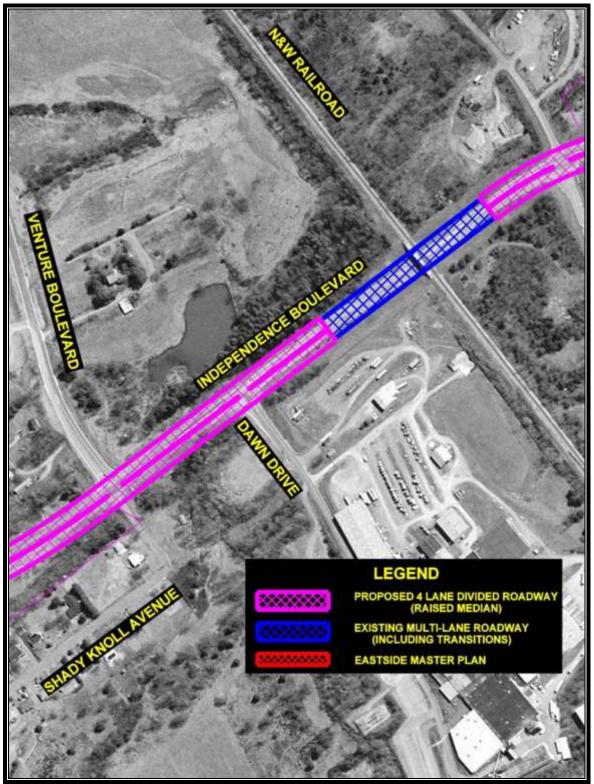

Average Back of Queue	1			1			1			1		
		EB	1 -		WB	1 -		NB	1 -		SB	1
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane group	L	TR		L	Т	R	L	<u>Т</u>	R	L	TR	
Init. queue/lane	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Flow rate/lane	285	659		212	331	15	253	202	219	15	134	
Satflow per lane	1719	1698		750	1810	1538	1215	1810	1538	1101	1791	
Capacity/lane	301	965		233	561	477	322	480	408	292	475	
Flow ratio	0.17	0.39		0.28	0.18	0.01	0.21	0.11	0.14	0.01	0.07	
v/c ratio	0.95	0.68		0.91	0.59	0.03	0.79	0.42	0.54	0.05	0.28	
I factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Arrival type	3	3		3	3	3	3	3	3	3	3	
Platoon ratio	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PF factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Q1	4.7	7.7		3.4	4.7	0.2	3.9	2.8	3.1	0.2	1.8	Í
kв	0.4	0.8		0.3	0.6	0.5	0.4	0.5	0.5	0.4	0.5	
Q2	2.8	1.7		1.8	0.8	0.0	1.2	0.4	0.5	0.0	0.2	
Q avg.	7.5	9.5		5.2	5.5	0.2	5.2	3.2	3.6	0.2	2.0	
Percentile Back of Queue (95th p	ercenti	le)	,	4		,	4	,	1		1	
fB%	1.8	1.8	[2.0	1.9	2.6	2.0	2.1	2.1	2.6	2.3	
BOQ, Q%	13.6	16.6		10.2	10.6	0.5	10.1	6.7	7.6	0.5	4.5	ĺ
Queue Storage Ratio				·		<u> </u>			·			
Q spacing	25.0	25.0		25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	
Q storage	0	0		0	0	0	0	0	0	0	0	
Avg. Rq												
95% Rq%												
HCS2000TM	C	nvright © (2000 Univ	ereity of Flo	wide All D	ighte Decor	uad	,			1	Version 4.1

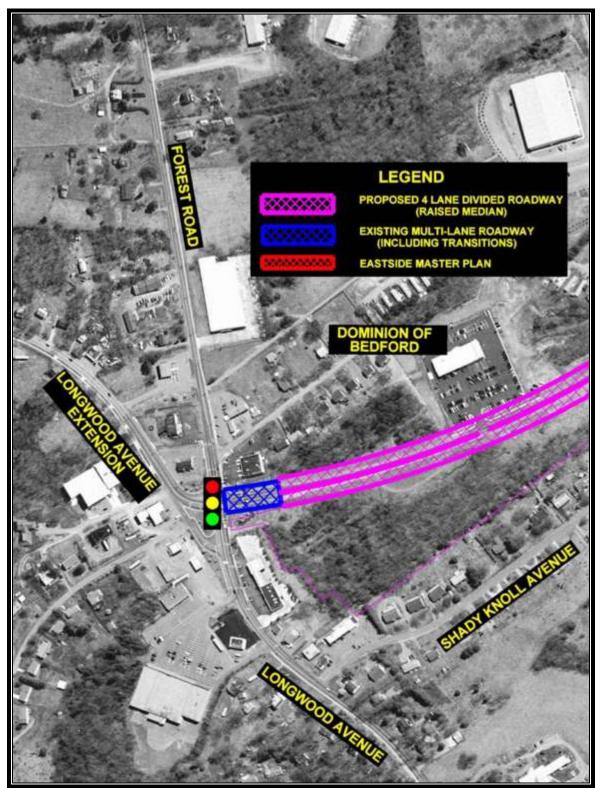
 $HCS2000^{\text{TM}}$


Copyright © 2000 University of Florida, All Rights Reserved

APPENDIX D




APPENDIX E


Independence Boulevard Corridor (Sheet 1 of 4)

Independence Boulevard Corridor (Sheet 2 of 4)

Independence Boulevard Corridor (Sheet 3 of 4)

Independence Boulevard Corridor (Sheet 4 of 4)